List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5409791/publications.pdf Version: 2024-02-01

		3515	4203
329	35,919	90	174
papers	citations	h-index	g-index
339 all docs	339 docs citations	339 times ranked	23025
an docs	docs chations	times ranked	citing authors

DETED | MIIMBY

#	Article	IF	CITATIONS
1	Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science, 2007, 318, 1737-1742.	6.0	4,578
2	The IPBES Conceptual Framework — connecting nature and people. Current Opinion in Environmental Sustainability, 2015, 14, 1-16.	3.1	1,658
3	A mid-term analysis of progress toward international biodiversity targets. Science, 2014, 346, 241-244.	6.0	949
4	Rising to the challenge of sustaining coral reef resilience. Trends in Ecology and Evolution, 2010, 25, 633-642.	4.2	872
5	Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature, 2004, 427, 533-536.	13.7	861
6	Fishing, Trophic Cascades, and the Process of Grazing on Coral Reefs. Science, 2006, 311, 98-101.	6.0	738
7	Thresholds and the resilience of Caribbean coral reefs. Nature, 2007, 450, 98-101.	13.7	724
8	The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140846.	1.2	679
9	Capacity shortfalls hinder the performance of marine protected areas globally. Nature, 2017, 543, 665-669.	13.7	630
10	Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends in Ecology and Evolution, 2008, 23, 555-563.	4.2	496
11	The cost and feasibility of marine coastal restoration. Ecological Applications, 2016, 26, 1055-1074.	1.8	495
12	Global disparity in the resilience of coral reefs. Trends in Ecology and Evolution, 2012, 27, 404-413.	4.2	384
13	Climate change disables coral bleaching protection on the Great Barrier Reef. Science, 2016, 352, 338-342.	6.0	375
14	Technical note: Simple and robust removal of sun glint for mapping shallowâ€water benthos. International Journal of Remote Sensing, 2005, 26, 2107-2112.	1.3	370
15	Trophic cascade facilitates coral recruitment in a marine reserve. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8362-8367.	3.3	328
16	Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biological Reviews, 2015, 90, 1215-1247.	4.7	304
17	The Impact Of Exploiting Grazers (Scaridae) On The Dynamics Of Caribbean Coral Reefs. , 2006, 16, 747-769.		303
18	Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sensing of Environment, 2002, 82, 248-257.	4.6	295

#	Article	IF	CITATIONS
19	Caribbean-wide decline in carbonate production threatens coral reef growth. Nature Communications, 2013, 4, 1402.	5.8	291
20	Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sensing of Environment, 2003, 88, 128-143.	4.6	289
21	Ocean acidification and warming will lower coral reef resilience. Global Change Biology, 2011, 17, 1798-1808.	4.2	277
22	Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Marine Ecology - Progress Series, 2007, 342, 139-149.	0.9	268
23	Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 1998, 19, 935-956.	1.3	261
24	Remote sensing of coral reefs and their physical environment. Marine Pollution Bulletin, 2004, 48, 219-228.	2.3	259
25	Marine Reserves Enhance the Recovery of Corals on Caribbean Reefs. PLoS ONE, 2010, 5, e8657.	1.1	259
26	Vulnerability of Coral Reef Fisheries to a Loss of Structural Complexity. Current Biology, 2014, 24, 1000-1005.	1.8	255
27	Avoiding Coral Reef Functional Collapse Requires Local and Global Action. Current Biology, 2013, 23, 912-918.	1.8	252
28	Remote Sensing of Coral Reefs for Monitoring and Management: A Review. Remote Sensing, 2016, 8, 118.	1.8	252
29	Loss of coral reef growth capacity to track future increases in sea level. Nature, 2018, 558, 396-400.	13.7	250
30	Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Marine Ecology - Progress Series, 2010, 414, 91-105.	0.9	245
31	Recent Region-wide Declines in Caribbean Reef Fish Abundance. Current Biology, 2009, 19, 590-595.	1.8	238
32	Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 2014, 28, 289-297.	3.6	236
33	Connectivity of reef fish between mangroves and coral reefs: Algorithms for the design of marine reserves at seascape scales. Biological Conservation, 2006, 128, 215-222.	1.9	231
34	Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. International Journal of Remote Sensing, 2012, 33, 3768-3797.	1.3	231
35	Coral reef habitat mapping: how much detail can remote sensing provide?. Marine Biology, 1997, 130, 193-202.	0.7	227
36	A review of remote sensing for the assessment and management of tropical coastal resources. Coastal Management, 1996, 24, 1-40.	1.0	225

#	Article	IF	CITATIONS
37	Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biological Conservation, 2010, 143, 565-575.	1.9	220
38	The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. Journal of Environmental Management, 1999, 55, 157-166.	3.8	216
39	The Ecological Role of Sharks on Coral Reefs. Trends in Ecology and Evolution, 2016, 31, 395-407.	4.2	209
40	Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. PLoS ONE, 2012, 7, e42884.	1.1	204
41	Operationalizing resilience for adaptive coral reef management under global environmental change. Global Change Biology, 2015, 21, 48-61.	4.2	201
42	Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs, 2009, 28, 761-773.	0.9	186
43	Ocean acidification reduces coral recruitment by disrupting intimate larvalâ€algal settlement interactions. Ecology Letters, 2012, 15, 338-346.	3.0	185
44	New interventions are needed to save coral reefs. Nature Ecology and Evolution, 2017, 1, 1420-1422.	3.4	182
45	Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event. Marine Ecology - Progress Series, 2001, 222, 209-216.	0.9	182
46	Quantifying temporal change in biodiversity: challenges and opportunities. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121931.	1.2	178
47	Development of a systematic classification scheme of marine habitats to facilitate regional management and mapping of Caribbean coral reefs. Biological Conservation, 1999, 88, 155-163.	1.9	176
48	Revisiting "Success―and "Failure―of Marine Protected Areas: A Conservation Scientist Perspective. Frontiers in Marine Science, 2018, 5, .	1.2	174
49	Benefits of water column correction and contextual editing for mapping coral reefs. International Journal of Remote Sensing, 1998, 19, 203-210.	1.3	167
50	Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs, 2012, 31, 853-868.	0.9	162
51	Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Molecular Ecology, 2012, 21, 1143-1157.	2.0	162
52	Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sensing of Environment, 2018, 216, 598-614.	4.6	162
53	Characterizing the ecological tradeâ€offs throughout the early ontogeny of coral recruitment. Ecological Monographs, 2016, 86, 20-44.	2.4	153
54	The impact of ecosystem connectivity on coral reef resilience. Journal of Applied Ecology, 2008, 45, 854-862.	1.9	149

#	Article	IF	CITATIONS
55	Remote sensing of the coastal zone: An overview and priorities for future research. International Journal of Remote Sensing, 2003, 24, 2805-2815.	1.3	148
56	Reserve design for uncertain responses of coral reefs to climate change. Ecology Letters, 2011, 14, 132-140.	3.0	145
57	The future of resilience-based management in coral reef ecosystems. Journal of Environmental Management, 2019, 233, 291-301.	3.8	143
58	Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnology and Oceanography, 2016, 61, 938-952.	1.6	139
59	The Future of Coral Reefs Subject to Rapid Climate Change: Lessons from Natural Extreme Environments. Frontiers in Marine Science, 2018, 5, .	1.2	136
60	Ecological resilience, robustness and vulnerability: how do these concepts benefit ecosystem management?. Current Opinion in Environmental Sustainability, 2014, 7, 22-27.	3.1	131
61	A holistic view of marine regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130279.	1.8	131
62	Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs?. Coral Reefs, 2009, 28, 683-690.	0.9	129
63	Bleaching and hurricane disturbances to populations of coral recruits in Belize. Marine Ecology - Progress Series, 1999, 190, 27-35.	0.9	128
64	Tradeoffs between fisheries harvest and the resilience of coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4536-4541.	3.3	124
65	Multiple Stressors and the Functioning of Coral Reefs. Annual Review of Marine Science, 2017, 9, 445-468.	5.1	124
66	Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132890.	1.2	123
67	Estimating leaf area index of mangroves from satellite data. Aquatic Botany, 1997, 58, 11-19.	0.8	119
68	Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: Fresh insights on resilience from a simulation model. Ecological Modelling, 2006, 196, 131-148.	1.2	118
69	Transforming management of tropical coastal seas to cope with challenges of the 21st century. Marine Pollution Bulletin, 2014, 85, 8-23.	2.3	118
70	Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biology, 2017, 15, e2003355.	2.6	117
71	Grouper as a Natural Biocontrol of Invasive Lionfish. PLoS ONE, 2011, 6, e21510.	1.1	116
72	Digital analysis of multispectral airborne imagery of coral reefs. Coral Reefs, 1998, 17, 59-69.	0.9	114

#	Article	IF	CITATIONS
73	Coral Reef Habitats as Surrogates of Species, Ecological Functions, and Ecosystem Services. Conservation Biology, 2008, 22, 941-951.	2.4	114
74	Integrating regional conservation priorities for multiple objectives into national policy. Nature Communications, 2015, 6, 8208.	5.8	113
75	The Functional Value of Caribbean Coral Reef, Seagrass and Mangrove Habitats to Ecosystem Processes. Advances in Marine Biology, 2006, 50, 57-189.	0.7	111
76	Mangrove Habitat Use by Juvenile Reef Fish: Meta-Analysis Reveals that Tidal Regime Matters More than Biogeographic Region. PLoS ONE, 2014, 9, e114715.	1.1	108
77	Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Marine Pollution Bulletin, 2018, 134, 166-176.	2.3	108
78	Fishing down a Caribbean food web relaxes trophic cascades. Marine Ecology - Progress Series, 2012, 445, 13-24.	0.9	107
79	Anticipative management for coral reef ecosystem services in the 21st century. Global Change Biology, 2015, 21, 504-514.	4.2	105
80	Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats. PLoS ONE, 2015, 10, e0128535.	1.1	103
81	Impaired recovery of the Great Barrier Reef under cumulative stress. Science Advances, 2018, 4, eaar6127.	4.7	103
82	Spatial Patterns of Aggression, Territory Size, and Harem Size in Five Sympatric Caribbean Parrotfish Species. Environmental Biology of Fishes, 2002, 63, 265-279.	0.4	101
83	Regionalâ€scale dominance of nonâ€framework building corals on Caribbean reefs affects carbonate production and future reef growth. Global Change Biology, 2015, 21, 1153-1164.	4.2	101
84	Fisheries productivity under progressive coral reef degradation. Journal of Applied Ecology, 2018, 55, 1041-1049.	1.9	101
85	MODELING THE BETA DIVERSITY OF CORAL REEFS. Ecology, 2006, 87, 2871-2881.	1.5	100
86	High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs. Biological Conservation, 2014, 171, 186-194.	1.9	100
87	Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Global Change Biology, 2013, 19, 2569-2583.	4.2	99
88	Coral reef habitat mapping: A combination of object-based image analysis and ecological modelling. Remote Sensing of Environment, 2018, 208, 27-41.	4.6	99
89	Measurement of seagrass standing crop using satellite and digital airborne remote sensing. Marine Ecology - Progress Series, 1997, 159, 51-60.	0.9	99
90	Evidence for and against the existence of alternate attractors on coral reefs. Oikos, 2013, 122, 481-491.	1.2	98

#	Article	IF	CITATIONS
91	Decline of coastal apex shark populations over the past half century. Communications Biology, 2018, 1, 223.	2.0	98
92	Revisiting coral reef connectivity. Coral Reefs, 2002, 21, 43-48.	0.9	97
93	Environmental and Sensor Limitations in Optical Remote Sensing of Coral Reefs: Implications for Monitoring and Sensor Design. Remote Sensing, 2012, 4, 271-302.	1.8	96
94	Operationalizing the Resilience of Coral Reefs in an Era of Climate Change. Conservation Letters, 2014, 7, 176-187.	2.8	96
95	Vulnerability of the Great Barrier Reef to climate change and local pressures. Global Change Biology, 2018, 24, 1978-1991.	4.2	92
96	On the prevalence and dynamics of inverted trophic pyramids and otherwise topâ€heavy communities. Ecology Letters, 2018, 21, 439-454.	3.0	92
97	Motivations, success, and cost of coral reef restoration. Restoration Ecology, 2019, 27, 981-991.	1.4	92
98	Spectral discrimination of coral mortality states following a severe bleaching event. International Journal of Remote Sensing, 2000, 21, 2321-2327.	1.3	91
99	Unprecedented bleaching-induced mortality in Porites spp. at Rangiroa Atoll, French Polynesia. Marine Biology, 2001, 139, 183-189.	0.7	90
100	Seasonal and spatial heterogeneity of recent sea surface temperature trends in the Caribbean Sea and southeast Gulf of Mexico. Marine Pollution Bulletin, 2012, 64, 956-965.	2.3	90
101	Patch dynamics of coral reef macroalgae under chronic and acute disturbance. Coral Reefs, 2005, 24, 681-692.	0.9	88
102	The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environmental Biology of Fishes, 2012, 94, 431-442.	0.4	88
103	Physical environments of the Caribbean Sea. Limnology and Oceanography, 2012, 57, 1233-1244.	1.6	87
104	Sexual vs. asexual reproduction in an ecosystem engineer: the massive coral Montastraea annularis. Journal of Animal Ecology, 2007, 76, 384-391.	1.3	86
105	The dynamics of architectural complexity on coral reefs under climate change. Global Change Biology, 2015, 21, 223-235.	4.2	85
106	Incorporating larval dispersal into <scp>MPA</scp> design for both conservation and fisheries. Ecological Applications, 2017, 27, 925-941.	1.8	83
107	Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Journal of Experimental Biology, 2010, 213, 894-900.	0.8	82
108	Designing a blueprint for coral reef survival. Biological Conservation, 2021, 257, 109107.	1.9	82

#	Article	IF	CITATIONS
109	Spectral unmixing of coral reef benthos under ideal conditions. Coral Reefs, 2004, 23, 60-73.	0.9	81
110	Connectivity networks reveal the risks of crownâ€ofâ€thorns starfish outbreaks on the Great Barrier Reef. Journal of Applied Ecology, 2014, 51, 1188-1196.	1.9	81
111	The cover of living and dead corals from airborne remote sensing. Coral Reefs, 2004, 23, 171.	0.9	80
112	Quantifying Multiscale Habitat Structural Complexity: A Cost-Effective Framework for Underwater 3D Modelling. Remote Sensing, 2016, 8, 113.	1.8	80
113	Experiment mimics fishing on parrotfish: insights on coral reef recovery and alternative attractors. Marine Ecology - Progress Series, 2014, 506, 115-127.	0.9	80
114	Biological and remote sensing perspectives of pigmentation in coral reef organisms. Advances in Marine Biology, 2002, 43, 277-317.	0.7	78
115	Consistency and inconsistency in multispecies population network dynamics of coral reef ecosystems. Marine Ecology - Progress Series, 2014, 499, 1-18.	0.9	78
116	Competitive effects of macroalgae on the fecundity of the reef-building coral Montastraea annularis. Marine Ecology - Progress Series, 2008, 367, 143-152.	0.9	77
117	Predicting the distribution of Montastraea reefs using wave exposure. Coral Reefs, 2012, 31, 493-503.	0.9	76
118	Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142018.	1.2	76
119	Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Global Change Biology, 2014, 20, 2459-2472.	4.2	76
120	Interactions among chronic and acute impacts on coral recruits: the importance of sizeâ€escape thresholds. Ecology, 2012, 93, 2131-2138.	1.5	75
121	Interdependency of tropical marine ecosystems in response to climate change. Nature Climate Change, 2014, 4, 724-729.	8.1	75
122	Reef flattening effects on total richness and species responses in the <scp>C</scp> aribbean. Journal of Animal Ecology, 2015, 84, 1678-1689.	1.3	74
123	High resilience masks underlying sensitivity to algal phase shifts of Pacific coral reefs. Oikos, 2016, 125, 644-655.	1.2	74
124	Effects of Marine Reserves versus Nursery Habitat Availability on Structure of Reef Fish Communities. PLoS ONE, 2012, 7, e36906.	1.1	73
125	Synergistic impacts of global warming on the resilience of coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130267.	1.8	73
126	Temporal clustering of tropical cyclones and its ecosystem impacts. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17626-17630.	3.3	72

#	Article	IF	CITATIONS
127	Incorporating ontogenetic dispersal, ecological processes and conservation zoning into reserve design. Biological Conservation, 2010, 143, 457-470.	1.9	71
128	Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE, 2020, 15, e0236399.	1.1	70
129	The role of sponge competition on coral reef alternative steady states. Ecological Modelling, 2011, 222, 1847-1853.	1.2	69
130	A novel framework for analyzing conservation impacts: evaluation, theory, and marine protected areas. Annals of the New York Academy of Sciences, 2017, 1399, 93-115.	1.8	69
131	Upwelling areas do not guarantee refuge for coral reefs in a warming ocean. Marine Ecology - Progress Series, 2010, 416, 47-56.	0.9	69
132	Attenuating effects of ecosystem management on coral reefs. Science Advances, 2018, 4, eaao5493.	4.7	68
133	A remote sensing method for resolving depth and subpixel composition of aquatic benthos. Limnology and Oceanography, 2003, 48, 480-488.	1.6	66
134	Cover Mapping and measurement of tropical coastal environments with hyperspectral and high spatial resolution data. International Journal of Remote Sensing, 1997, 18, 237-242.	1.3	65
135	Interaction of herbivory and seasonality on the dynamics of Caribbean macroalgae. Coral Reefs, 2012, 31, 683-692.	0.9	64
136	Can a thermally tolerant symbiont improve the future of <scp>C</scp> aribbean coral reefs?. Global Change Biology, 2013, 19, 273-281.	4.2	64
137	The effect of fishing on hysteresis in Caribbean coral reefs. Theoretical Ecology, 2012, 5, 105-114.	0.4	63
138	Mapping ecosystem functions to the valuation of ecosystem services: implications of species–habitat associations for coastal land-use decisions. Theoretical Ecology, 2009, 2, 67-77.	0.4	61
139	Optimizing for multiple species and multiple values: tradeoffs inherent in ecosystemâ€based fisheries management. Conservation Letters, 2011, 4, 21-30.	2.8	59
140	Empirical relationships among resilience indicators on Micronesian reefs. Coral Reefs, 2013, 32, 213-226.	0.9	59
141	Interpreting coral reef monitoring data: A guide for improved management decisions. Ecological Indicators, 2017, 72, 848-869.	2.6	59
142	Management for network diversity speeds evolutionary adaptation to climate change. Nature Climate Change, 2019, 9, 632-636.	8.1	59
143	Hurricane-Driven Patterns of Clonality in an Ecosystem Engineer: The Caribbean Coral Montastraea annularis. PLoS ONE, 2013, 8, e53283.	1.1	59
144	Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Global Change Biology, 2010, 16, 1229-1246.	4.2	58

#	Article	IF	CITATIONS
145	A framework for identifying and characterising coral reef "oases―against a backdrop of degradation. Journal of Applied Ecology, 2018, 55, 2865-2875.	1.9	58
146	TROPICAL COASTAL HABITATS AS SURROGATES OF FISH COMMUNITY STRUCTURE, GRAZING, AND FISHERIES VALUE. Ecological Applications, 2008, 18, 1689-1701.	1.8	57
147	Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach. Ecological Modelling, 2009, 220, 1305-1314.	1.2	57
148	Consequences of Ecological, Evolutionary and Biogeochemical Uncertainty for Coral Reef Responses to Climatic Stress. Current Biology, 2014, 24, R413-R423.	1.8	57
149	Managing Recovery Resilience in Coral Reefs Against Climate-Induced Bleaching and Hurricanes: A 15 Year Case Study From Bonaire, Dutch Caribbean. Frontiers in Marine Science, 2019, 6, .	1.2	57
150	A bird's-eye view of the health of coral reefs. Nature, 2001, 413, 36-36.	13.7	56
151	How much time can herbivore protection buy for coral reefs under realistic regimes of hurricanes and coral bleaching?. Global Change Biology, 2011, 17, 2033-2048.	4.2	54
152	Size matters in competition between corals and macroalgae. Marine Ecology - Progress Series, 2012, 467, 77-88.	0.9	54
153	Reciprocal facilitation and nonâ€kinearity maintain habitat engineering on coral reefs. Oikos, 2013, 122, 428-440.	1.2	54
154	Remote Sensing of Coral Bleaching Using Temperature and Light: Progress towards an Operational Algorithm. Remote Sensing, 2018, 10, 18.	1.8	54
155	The shape of success in a turbulent world: wave exposure filtering of coral reef herbivory. Functional Ecology, 2017, 31, 1312-1324.	1.7	54
156	Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nature Climate Change, 2015, 5, 777-781.	8.1	53
157	The role of surgeonfish (Acanthuridae) in maintaining algal turf biomass on coral reefs. Journal of Experimental Marine Biology and Ecology, 2015, 473, 152-160.	0.7	53
158	Climate change induces demographic resistance to disease in novel coral assemblages. Proceedings of the United States of America, 2011, 108, 1967-1969.	3.3	52
159	Global disparity in the ecological benefits of reducing carbon emissions for coral reefs. Nature Climate Change, 2014, 4, 1090-1094.	8.1	51
160	Coral–algal phase shifts alter fish communities and reduce fisheries production. Global Change Biology, 2015, 21, 165-172.	4.2	51
161	Beta and habitat diversity in marine systems: a new approach to measurement, scaling and interpretation. Oecologia, 2001, 128, 274-280.	0.9	50
162	Reserve effects and natural variation in coral reef communities. Journal of Applied Ecology, 2008, 45, 1010-1018.	1.9	50

#	Article	IF	CITATIONS
163	Revisiting the functional roles of the surgeonfish Acanthurus nigrofuscus and Ctenochaetus striatus. Coral Reefs, 2012, 31, 1093-1101.	0.9	50
164	Reefs of last resort: Locating and assessing thermal refugia in the wider Caribbean. Biological Conservation, 2013, 167, 179-186.	1.9	49
165	Reduced density of the herbivorous urchin DiademaÂantillarum inside a Caribbean marine reserve linked to increased predation pressure by fishes. Coral Reefs, 2009, 28, 783-791.	0.9	48
166	Scientific frontiers in the management of coral reefs. Frontiers in Marine Science, 2015, 2, .	1.2	48
167	Phase shift facilitation following cyclone disturbance on coral reefs. Oecologia, 2015, 178, 1193-1203.	0.9	48
168	Marine Reserve Targets to Sustain and Rebuild Unregulated Fisheries. PLoS Biology, 2017, 15, e2000537.	2.6	48
169	Ecological risk and the exploitation of herbivorous reef fish across Micronesia. Marine Ecology - Progress Series, 2013, 482, 197-215.	0.9	48
170	Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology, 2017, 98, 304-314.	1.5	46
171	Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Marine Biology, 2014, 161, 1385-1393.	0.7	45
172	Reef-scale failure of coral settlement following typhoon disturbance and macroalgal bloom in Palau, Western Pacific. Coral Reefs, 2014, 33, 613-623.	0.9	45
173	Stratifying herbivore fisheries by habitat to avoid ecosystem overfishing of coral reefs. Fish and Fisheries, 2016, 17, 266-278.	2.7	45
174	Statistical power of non-parametric tests: A quick guide for designing sampling strategies. Marine Pollution Bulletin, 2002, 44, 85-87.	2.3	44
175	Hierarchical spatial patterns in Caribbean reef benthic assemblages. Journal of Biogeography, 2015, 42, 1327-1335.	1.4	44
176	Reconciling Development and Conservation under Coastal Squeeze from Rising Sea Level. Conservation Letters, 2016, 9, 361-368.	2.8	43
177	Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs. Coral Reefs, 2015, 34, 715-725.	0.9	42
178	Tracing the influence of land-use change on water quality and coral reefs using a Bayesian model. Scientific Reports, 2017, 7, 4740.	1.6	42
179	Winners and losers as mangrove, coral and seagrass ecosystems respond to sea-level rise in Solomon Islands. Environmental Research Letters, 2017, 12, 094009.	2.2	42
180	Monitoring Coral Reefs from Space. Oceanography, 2010, 23, 118-133.	0.5	41

#	Article	IF	CITATIONS
181	Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs. Marine Pollution Bulletin, 2014, 83, 155-164.	2.3	41
182	Resilience of branching and massive corals to wave loading under sea level rise – A coupled computational fluid dynamics-structural analysis. Marine Pollution Bulletin, 2014, 86, 91-101.	2.3	40
183	Clobal inequities between polluters and the polluted: climate change impacts on coral reefs. Global Change Biology, 2015, 21, 3982-3994.	4.2	40
184	Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance. Coral Reefs, 2016, 35, 613-623.	0.9	40
185	Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. Global Change Biology, 2021, 27, 4307-4321.	4.2	39
186	Impacts of macroalgal competition and parrotfish predation on the growth of a common bioeroding sponge. Marine Ecology - Progress Series, 2012, 444, 133-142.	0.9	38
187	Embracing a world of subtlety and nuance on coral reefs. Coral Reefs, 2017, 36, 1003-1011.	0.9	38
188	Geographic information systems: A tool for integrated coastal zone management in Belize. Coastal Management, 1995, 23, 111-121.	1.0	37
189	Coral Adaptation in the Face of Climate Change. Science, 2008, 320, 315-316.	6.0	37
190	FORUM: Sustaining ecosystem functions in a changing world: a call for an integrated approach. Journal of Applied Ecology, 2013, 50, 1124-1130.	1.9	37
191	A model-based approach to determine the long-term effects of multiple interacting stressors on coral reefs. , 2011, 21, 2722-2733.		36
192	Minimizing the Shortâ€Term Impacts of Marine Reserves on Fisheries While Meeting Longâ€Term Goals for Recovery. Conservation Letters, 2015, 8, 180-189.	2.8	36
193	High refuge availability on coral reefs increases the vulnerability of reefâ€associated predators to overexploitation. Ecology, 2018, 99, 450-463.	1.5	36
194	Effects of physical environmental conditions on the patch dynamics of Dictyota pulchella and Lobophora variegata on Caribbean coral reefs. Marine Ecology - Progress Series, 2010, 403, 63-74.	0.9	36
195	Disentangling trophic interactions inside a Caribbean marine reserve. , 2010, 20, 1979-1992.		35
196	Split spawning increases robustness of coral larval supply and inter-reef connectivity. Nature Communications, 2019, 10, 3463.	5.8	35
197	Predicting structural complexity of reefs and fish abundance using acoustic remote sensing (RoxAnn). Marine Biology, 2011, 158, 489-504.	0.7	34
198	The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs, 2021, 40, 1769-1806.	0.9	34

#	Article	IF	CITATIONS
199	Uniting paradigms of connectivity in marine ecology. Ecology, 2016, 97, 2447-2457.	1.5	33
200	Seascapes as drivers of herbivore assemblages in coral reef ecosystems. Ecological Monographs, 2019, 89, e01336.	2.4	33
201	Executives' engagement with climate science and perceived need for business adaptation to climate change. Climatic Change, 2015, 131, 321-333.	1.7	32
202	Vertical accretion and carbon burial rates in subtropical seagrass meadows increased following anthropogenic pressure from European colonisation. Estuarine, Coastal and Shelf Science, 2018, 202, 40-53.	0.9	32
203	Projecting coral responses to intensifying marine heatwaves under ocean acidification. Global Change Biology, 2022, 28, 1753-1765.	4.2	32
204	Biotic and multi-scale abiotic controls of habitat quality: their effect on coral-reef fishes. Marine Ecology - Progress Series, 2011, 437, 201-214.	0.9	31
205	A typology of timeâ€scale mismatches and behavioral interventions to diagnose and solve conservation problems. Conservation Biology, 2016, 30, 42-49.	2.4	31
206	The influence of resilience-based management on coral reef monitoring: A systematic review. PLoS ONE, 2017, 12, e0172064.	1.1	31
207	Decadalâ€scale rates of reef erosion following El Niñoâ€related mass coral mortality. Global Change Biology, 2015, 21, 4415-4424.	4.2	30
208	Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Communications Biology, 2020, 3, 442.	2.0	30
209	Benthic-based contributions to climate change mitigation and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190107.	1.8	30
210	Cumulative bleaching undermines systemic resilience of the Great Barrier Reef. Current Biology, 2021, 31, 5385-5392.e4.	1.8	30
211	Resilience metrics to inform ecosystem management under global change with application to coral reefs. Methods in Ecology and Evolution, 2015, 6, 1088-1096.	2.2	29
212	Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral. Scientific Reports, 2017, 7, 41053.	1.6	29
213	Habitat maps to enhance monitoring and management of the Great Barrier Reef. Coral Reefs, 2020, 39, 1039-1054.	0.9	29
214	A visual assessment technique for estimating seagrass standing crop. , 1997, 7, 239-251.		28
215	Combining optical and acoustic data to enhance the detection of Caribbean forereef habitats. Remote Sensing of Environment, 2010, 114, 2768-2778.	4.6	28
216	Controlling range expansion in habitat networks by adaptively targeting source populations. Conservation Biology, 2016, 30, 856-866.	2.4	28

#	Article	IF	CITATIONS
217	Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands. Environmental Research Letters, 2018, 13, 044035.	2.2	28
218	A guide to modelling priorities for managing landâ€based impacts on coastal ecosystems. Journal of Applied Ecology, 2019, 56, 1106-1116.	1.9	28
219	Habitat and body size effects on the isotopic niche space of invasive lionfish and endangered Nassau grouper. Ecosphere, 2014, 5, 1-11.	1.0	27
220	Asymmetric dispersal is a critical element of concordance between biophysical dispersal models and spatial genetic structure in Great Barrier Reef corals. Diversity and Distributions, 2019, 25, 1684-1696.	1.9	27
221	Importance of differentiating Orbicella reefs from gorgonian plains for ecological assessments of Caribbean reefs. Marine Ecology - Progress Series, 2015, 530, 93-101.	0.9	27
222	A roadmap to integrating resilience into the practice of coral reef restoration. Global Change Biology, 2022, 28, 4751-4764.	4.2	27
223	The effects of ecologically determined spatial complexity on the classification accuracy of simulated coral reef images. Remote Sensing of Environment, 2009, 113, 965-978.	4.6	26
224	Can Caribbean coral populations be modelled at metapopulation scales?. Marine Ecology - Progress Series, 1999, 180, 275-288.	0.9	26
225	Tradeâ€offs between fisheries and the conservation of ecosystem function are defined by management strategy. Frontiers in Ecology and the Environment, 2014, 12, 324-329.	1.9	25
226	<i>Symbiodinium</i> biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, <i>Orbicella annularis</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161938.	1.2	25
227	Tectonic subsidence provides insight into possible coral reef futures under rapid sea-level rise. Coral Reefs, 2016, 35, 155-167.	0.9	25
228	Habitat change mediates the response of coral reef fish populations to terrestrial run-off. Marine Ecology - Progress Series, 2017, 576, 55-68.	0.9	25
229	Knowledge Gaps in the Biology, Ecology, and Management of the Pacific Crown-of-Thorns Sea Star <i>Acanthaster</i> sp. on Australia's Great Barrier Reef. Biological Bulletin, 2021, 241, 330-346.	0.7	25
230	Phosphorus and nitrogen enrichment do not enhance brown frondose "macroalgae― Marine Pollution Bulletin, 2004, 48, 196-199.	2.3	24
231	OPTIMAL SCALES TO OBSERVE HABITAT DYNAMICS: A CORAL REEF EXAMPLE. , 2007, 17, 641-647.		24
232	Novel Ecosystems: Altering Fish Assemblages in Warming Waters. Current Biology, 2011, 21, R822-R824.	1.8	24
233	Revisiting climate thresholds and ecosystem collapse. Frontiers in Ecology and the Environment, 2011, 9, 94-96.	1.9	24
234	Redefining Thermal Regimes to Design Reserves for Coral Reefs in the Face of Climate Change. PLoS ONE, 2014, 9, e110634.	1.1	24

#	Article	IF	CITATIONS
235	Reserve Sizes Needed to Protect Coral Reef Fishes. Conservation Letters, 2018, 11, e12415.	2.8	24
236	Food, money and lobsters: Valuing ecosystem services to align environmental management with Sustainable Development Goals. Ecosystem Services, 2018, 29, 56-69.	2.3	24
237	Maps, laws and planning policy: Working with biophysical and spatial uncertainty in the case of sea level rise. Environmental Science and Policy, 2014, 44, 247-257.	2.4	23
238	Adapting to the impacts of global change on an artisanal coral reef fishery. Ecological Economics, 2014, 102, 118-125.	2.9	23
239	Fisheries and biodiversity benefits of using static versus dynamic models for designing marine reserve networks. Ecosphere, 2015, 6, art182.	1.0	23
240	Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems. Ecological Monographs, 2015, 85, 117-132.	2.4	23
241	Bestâ€practice forestry management delivers diminishing returns for coral reefs with increased landâ€elearing. Journal of Applied Ecology, 2020, 57, 2381-2392.	1.9	23
242	Sedimentation and overfishing drive changes in early succession and coral recruitment. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202575.	1.2	23
243	Integrating environmental variability to broaden the research on coral responses to future ocean conditions. Global Change Biology, 2021, 27, 5532-5546.	4.2	23
244	Protection of functionally important parrotfishes increases their biomass but fails to deliver enhanced recruitment. Marine Ecology - Progress Series, 2015, 522, 245-254.	0.9	23
245	Widespread prevalence of cryptic Symbiodinium D in the key Caribbean reef builder, Orbicella annularis. Coral Reefs, 2015, 34, 519-531.	0.9	22
246	Direct and indirect effects of nursery habitats on coralâ€reef fish assemblages, grazing pressure and benthic dynamics. Oikos, 2016, 125, 957-967.	1.2	22
247	Transient Grazing and the Dynamics of an Unanticipated Coral–Algal Phase Shift. Ecosystems, 2019, 22, 296-311.	1.6	22
248	Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. Conservation Biology, 2021, 35, 1473-1483.	2.4	22
249	The Resilience of Coral Reefs and Its Implications for Reef Management. , 2011, , 509-519.		21
250	Changes in the spear fishery of herbivores associated with closed grouper season in Palau, Micronesia. Animal Conservation, 2014, 17, 133-143.	1.5	21
251	The effect of structurally complex corals and herbivory on the dynamics of Halimeda. Coral Reefs, 2016, 35, 597-609.	0.9	21
252	Avoiding a crisis of motivation for ocean management under global environmental change. Global Change Biology, 2017, 23, 4483-4496.	4.2	21

#	Article	IF	CITATIONS
253	Caribbean coral growth influenced by anthropogenic aerosol emissions. Nature Geoscience, 2013, 6, 362-366.	5.4	20
254	A critique of claims for negative impacts of Marine Protected Areas on fisheries. Ecological Applications, 2016, 26, 637-641.	1.8	20
255	Trends and frontiers for the science and management of the oceans. Current Biology, 2017, 27, R431-R434.	1.8	20
256	Acute drivers influence recent inshore Great Barrier Reef dynamics. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182063.	1.2	20
257	Modelling and mapping regionalâ€scale patterns of fishing impact and fish stocks to support coralâ€reef management in Micronesia. Diversity and Distributions, 2018, 24, 1729-1743.	1.9	20
258	Mangroves reduce the vulnerability of coral reef fisheries to habitat degradation. PLoS Biology, 2019, 17, e3000510.	2.6	20
259	Impacts of the 2014–2017 global bleaching event on a protected remote atoll in the Western Indian Ocean. Coral Reefs, 2020, 39, 15-26.	0.9	20
260	Two-dimensional modelling of wave dynamics and wave forces on fringing coral reefs. Coastal Engineering, 2020, 155, 103594.	1.7	20
261	Detecting conservation benefits of marine reserves on remote reefs of the northern GBR. PLoS ONE, 2017, 12, e0186146.	1.1	19
262	Contribution of individual rivers to Great Barrier Reef nitrogen exposure with implications for management prioritization. Marine Pollution Bulletin, 2018, 133, 30-43.	2.3	19
263	Paradigm Lost: Dynamic Nutrients and Missing Detritus on Coral Reefs. BioScience, 2018, 68, 487-495.	2.2	19
264	The effects of rubble mobilisation on coral fragment survival, partial mortality and growth. Journal of Experimental Marine Biology and Ecology, 2020, 533, 151467.	0.7	19
265	An Ecosystem-Level Perspective on the Host and Symbiont Traits Needed to Mitigate Climate Change Impacts on Caribbean Coral Reefs. Ecosystems, 2014, 17, 1-13.	1.6	18
266	Quantifying the reliability of dispersal paths in connectivity networks. Journal of the Royal Society Interface, 2015, 12, 20150013.	1.5	18
267	Asymmetric competition prevents the outbreak of an opportunistic species after coral reef degradation. Oecologia, 2016, 181, 161-173.	0.9	18
268	Stage-specific effects of Lobophora on the recruitment success of a reef-building coral. Coral Reefs, 2019, 38, 489-498.	0.9	18
269	Revisiting the paradigm of sharkâ€driven trophic cascades in coral reef ecosystems. Ecology, 2021, 102, e03303.	1.5	18
270	Evaluating sustainable development policies in rural coastal economies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33170-33176.	3.3	18

#	Article	IF	CITATIONS
271	Spatial Patterns of Parrotfish Corallivory in the Caribbean: The Importance of Coral Taxa, Density and Size. PLoS ONE, 2011, 6, e29133.	1.1	18
272	Quantifying the squeezing or stretching of fisheries as they adapt to displacement by marine reserves. Conservation Biology, 2016, 30, 166-175.	2.4	17
273	Editorial: The Future of Coral Reefs Subject to Rapid Climate Change: Lessons From Natural Extreme Environments. Frontiers in Marine Science, 2018, 5, .	1.2	17
274	Near-reef and nearshore tropical cyclone wave climate in the Great Barrier Reef with and without reef structure. Coastal Engineering, 2020, 157, 103652.	1.7	17
275	Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions. Marine Pollution Bulletin, 2015, 97, 188-198.	2.3	16
276	Linking the biology and ecology of key herbivorous unicornfish to fisheries management in the Pacific. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 790-805.	0.9	16
277	A Genuine Winâ€Win: Resolving the "Conserve or Catch―Conflict in Marine Reserve Network Design. Conservation Letters, 2017, 10, 555-563.	2.8	16
278	Quantitative decision support tools facilitate social-ecological alignment in community-based marine protected area design. Ecology and Society, 2019, 24, .	1.0	16
279	Important ecosystem function, low redundancy and high vulnerability: The trifecta argument for protecting the Great Barrier Reef's tabular <i>Acropora</i> . Conservation Letters, 2021, 14, e12817.	2.8	16
280	Cumulative impacts across Australia's Great Barrier Reef: aÂmechanistic evaluation. Ecological Monographs, 2022, 92, .	2.4	16
281	The importance of 1.5°C warming for the Great Barrier Reef. Global Change Biology, 2022, 28, 1332-1341.	4.2	16
282	Macroalgal associations of motile epifaunal invertebrate communities on coral reefs. Marine Ecology, 2013, 34, 409-419.	0.4	15
283	What spatial scales are believable for climate model projections of sea surface temperature?. Climate Dynamics, 2014, 43, 1483-1496.	1.7	15
284	Weighting species abundance estimates for marine resource assessment. , 1996, 6, 115-120.		14
285	Spatial and temporal variability of seagrass at Lizard Island, Great Barrier Reef. Botanica Marina, 2015, 58, 35-49.	0.6	14
286	Reassessing Shark-Driven Trophic Cascades on Coral Reefs: A Reply to Ruppert et al Trends in Ecology and Evolution, 2016, 31, 587-589.	4.2	14
287	Parrotfish sex ratios recover rapidly in Bermuda following a fishing ban. Coral Reefs, 2016, 35, 421-425.	0.9	14
288	Evolution reverses the effect of network structure on metapopulation persistence. Ecology, 2021, 102, e03381.	1.5	14

#	Article	IF	CITATIONS
289	Refuge-dependent herbivory controls a key macroalga on coral reefs. Coral Reefs, 2020, 39, 953-965.	0.9	12
290	Resilience Concepts and Their Application to Coral Reefs. Frontiers in Ecology and Evolution, 2020, 8, .	1,1	12
291	Benthic micro―and macro ommunity succession and coral recruitment under overfishing and nutrient enrichment. Ecology, 2021, 102, e03536.	1.5	12
292	Microhabitat use of juvenile coral reef fish in Palau. Environmental Biology of Fishes, 2012, 95, 355-370.	0.4	11
293	Life-history traits of a common Caribbean coral-excavating sponge,Cliona tenuis(Porifera:) Tj ETQq1 1 0.784314	rgBT /Ove 0.2	rlock 10 Tf 5
294	Communicating physics-based wave model predictions of coral reefs using Bayesian belief networks. Environmental Modelling and Software, 2018, 108, 123-132.	1.9	11
295	RUbble Biodiversity Samplers: 3Dâ€printed coral models to standardize biodiversity censuses. Methods in Ecology and Evolution, 2020, 11, 1395-1400.	2.2	11
296	Fine-Tuning Heat Stress Algorithms to Optimise Global Predictions of Mass Coral Bleaching. Remote Sensing, 2021, 13, 2677.	1.8	11
297	Mass spawning aggregation of the giant bumphead parrotfish <i>Bolbometopon muricatum</i> . Journal of Fish Biology, 2017, 91, 354-361.	0.7	10
298	Length–weight relationships to quantify biomass for motile coral reef cryptofauna. Coral Reefs, 2020, 39, 1649-1660.	0.9	10
299	Seagrass Organic Carbon Stocks Show Minimal Variation Over Short Time Scales in a Heterogeneous Subtropical Seascape. Estuaries and Coasts, 2018, 41, 1732-1743.	1.0	9
300	Growth responses of branching versus massive corals to ocean warming on the Great Barrier Reef, Australia. Science of the Total Environment, 2020, 705, 135908.	3.9	9
301	Multi-decadal changes in structural complexity following mass coral mortality on a Caribbean reef. Biogeosciences, 2020, 17, 5909-5918.	1.3	9
302	Microherbivores are significant grazers on Palau's forereefs. Marine Biology, 2018, 165, 1.	0.7	8
303	Reconnecting reef recovery in a world of coral bleaching. Limnology and Oceanography: Methods, 2021, 19, 702-713.	1.0	8
304	Use of skeletal Sr/Ca ratios to determine growth patterns in a branching coral Isopora palifera. Marine Biology, 2017, 164, 1.	0.7	7
305	Metapopulation Dynamics of Hard Corals. , 2006, , 157-203.		6
306	Preferences and perceptions of the recreational spearfishery of the Great Barrier Reef. PLoS ONE, 2019, 14, e0221855.	1.1	5

#	Article	IF	CITATIONS
307	Cryptic diversity in the macroalgal genus Lobophora (Dictyotales) reveals environmental drivers of algal assemblages. Marine Biology, 2020, 167, 1.	0.7	5
308	A seascape-level perspective of coral reef ecosystems. , 2006, , 78-114.		4
309	Detecting end-member structural and biological elements of a coral reef using a single-beam acoustic ground discrimination system. International Journal of Remote Sensing, 2011, 32, 7749-7776.	1.3	4
310	Disentangling traitâ€based mortality in species with decoupled size and age. Journal of Animal Ecology, 2015, 84, 1446-1456.	1.3	4
311	Seagrass morphometrics at species level in Moreton Bay, Australia from 2012 to 2013. Scientific Data, 2017, 4, 170060.	2.4	4
312	Response to Bode and colleagues: â€~Resilient reefs may exist, but can larval dispersal models find them?'. PLoS Biology, 2018, 16, e2007047.	2.6	4
313	Coupled beta diversity patterns among coral reef benthic taxa. Oecologia, 2021, 195, 225-234.	0.9	4
314	Scaling the effects of ocean acidification on coral growth and coral–coral competition on coral community recovery. PeerJ, 2021, 9, e11608.	0.9	4
315	Cryptic coral recruits as dormant "seed banks― An unrecognized mechanism of rapid reef recovery. Ecology, 2022, 103, e3621.	1.5	4
316	Revisiting the evidentiary basis for ecological cascades with conservation impacts. Conservation Letters, 2022, 15, .	2.8	4
317	Delineating optimal settlement areas of juvenile reef fish in Ngederrak Reef, Koror state, Republic of Palau. Environmental Monitoring and Assessment, 2015, 187, 4089.	1.3	3
318	Response to "Rebutting the inclined analyses on the costâ€effectiveness and feasibility of coral reef restoration― Ecological Applications, 2017, 27, 1974-1980.	1.8	3
319	Survival of a grey reef shark <i>Carcharhinus amblyrhynchos</i> without a dorsal fin. Journal of Fish Biology, 2019, 94, 820-822.	0.7	3
320	The commercially important shoemaker spinefoot, Siganus sutor , connects coral reefs to neighbouring seagrass meadows. Journal of Fish Biology, 2020, 96, 1034-1044.	0.7	3
321	Combined direct and indirect impacts of warming on the productivity of coral reef fishes. Ecosphere, 2022, 13, .	1.0	3
322	Factors affecting tolerance to herbivory in a calcifying alga on coral reefs. Marine Biology, 2017, 164, 1.	0.7	2
323	Ecology: Returning Caribbean Coral Reefs to Their Former Glory. Current Biology, 2021, 31, R188-R190.	1.8	2
324	Temporal stability of <i> Orbicella annularis</i> symbioses: a case study in The Bahamas. Bulletin of Marine Science, 2019, 95, 289-304.	0.4	1

#	Article	IF	CITATIONS
325	Monitoring Biodiversity from space: The ESA DIVERSITY project. , 2009, , .		0
326	Reply to Jordan-Garza et al.: Demographic dynamism as an additional mechanism of coral disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E112-E112.	3.3	0
327	LIFE HISTORIES OFFER A CLUE TO THE FUTURE OF INFECTIOUS DISEASE ON CORAL REEFS. ANZIAM Journal, 2012, 54, 64-73.	0.3	0
328	Response: Commentary: Managing Recovery Resilience in Coral Reefs Against Climate-Induced Bleaching and Hurricanes: A 15 Year Case Study From Bonaire, Dutch Caribbean. Frontiers in Marine Science, 2020, 7, .	1.2	0
329	An MPA Design Approach to Benefit Fisheries: Maximising Larval Export and Minimising Redundancy. Diversity, 2021, 13, 586.	0.7	0