Ling-Hsien Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/540968/publications.pdf

Version: 2024-02-01

516710 501196 1,479 28 16 28 citations g-index h-index papers 30 30 30 1942 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	The Role of Aldehydeâ€Functionalized Crosslinkers on the Property of Chitosan Hydrogels. Macromolecular Bioscience, 2022, 22, e2100477.	4.1	6
2	Tyrosine 12 of human calcitonin modulates its amyloid formation, membrane binding, and bioactivity. Biochimie, 2022, 197, 121-129.	2.6	4
3	Site specific NMR characterization of abeta-40 oligomers cross seeded by abeta-42 oligomers. Chemical Science, 2022, 13, 8526-8535.	7.4	8
4	Exploring the Impact of Glyoxal Glycation on β-Amyloid Peptide (Aβ) Aggregation in Alzheimer's Disease. Journal of Physical Chemistry B, 2021, 125, 5559-5571.	2.6	6
5	Dopamine-Conjugated Carbon Dots Inhibit Human Calcitonin Fibrillation. Nanomaterials, 2021, 11, 2242.	4.1	6
6	Role of lysine residue of islet amyloid polypeptide in fibril formation, membrane binding, and inhibitor binding. Biochimie, 2020, 177, 153-163.	2.6	3
7	TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of Alzheimer's disease. Nature Communications, 2020, 11, 5950.	12.8	45
8	A Fluorogenic Molecule for Probing Islet Amyloid Using Flavonoid as a Scaffold Design. Biochemistry, 2020, 59, 1482-1492.	2.5	7
9	Inhibiting Human Calcitonin Fibril Formation with Its Most Relevant Aggregation-Resistant Analog. Journal of Physical Chemistry B, 2019, 123, 10171-10180.	2.6	11
10	Protein Glycation by Glyoxal Promotes Amyloid Formation by Islet Amyloid Polypeptide. Biophysical Journal, 2019, 116, 2304-2313.	0.5	27
11	Rationally designed divalent caffeic amides inhibit amyloid-β fibrillization, induce fibril dissociation, and ameliorate cytotoxicity. European Journal of Medicinal Chemistry, 2018, 158, 393-404.	5 . 5	11
12	Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers. Chemical Science, 2017, 8, 5030-5040.	7.4	37
13	A Free Energy Barrier Caused by the Refolding of an Oligomeric Intermediate Controls the Lag Time of Amyloid Formation by hIAPP. Journal of the American Chemical Society, 2017, 139, 16748-16758.	13.7	60
14	Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. Journal of Diabetes Research, 2016, 2016, 1-18.	2.3	177
15	Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. ELife, 2016, 5, .	6.0	126
16	Matrix Metalloproteinase-9 Protects Islets from Amyloid-induced Toxicity. Journal of Biological Chemistry, 2015, 290, 30475-30485.	3.4	12
17	Mutational Analysis of the Ability of Resveratrol To Inhibit Amyloid Formation by Islet Amyloid Polypeptide: Critical Evaluation of the Importance of Aromatic–Inhibitor and Histidine–Inhibitor Interactions. Biochemistry, 2015, 54, 666-676.	2.5	50
18	Insights into the consequences of co-polymerisation in the early stages of IAPP and ${\sf A}\hat{\sf I}^2$ peptide assembly from mass spectrometry. Analyst, The, 2015, 140, 6990-6999.	3.5	48

#	Article	IF	CITATION
19	Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry–mass spectrometry. Nature Chemistry, 2015, 7, 73-81.	13.6	255
20	Mutational Analysis of Preamyloid Intermediates: The Role of His-Tyr Interactions in Islet Amyloid Formation. Biophysical Journal, 2014, 106, 1520-1527.	0.5	30
21	Aspirin, Diabetes, and Amyloid: Re-examination of the Inhibition of Amyloid Formation by Aspirin and Ketoprofen. ACS Chemical Biology, 2014, 9, 1632-1637.	3.4	9
22	Role of Aromatic Interactions in Amyloid Formation by Islet Amyloid Polypeptide. Biochemistry, 2013, 52, 333-342.	2.5	111
23	Islet amyloid polypeptide toxicity and membrane interactions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19279-19284.	7.1	128
24	Islet amyloid: From fundamental biophysics to mechanisms of cytotoxicity. FEBS Letters, 2013, 587, 1106-1118.	2.8	166
25	Sensitivity of Amyloid Formation by Human Islet Amyloid Polypeptide to Mutations at Residue 20. Journal of Molecular Biology, 2012, 421, 282-295.	4.2	75
26	CeCl3·7H2O–NaI catalyzed intramolecular addition reactions of 7-hydroxy-1,3-dienes: a facile approach to hexahydrobenzofurans and tetrahydrofurans. Tetrahedron, 2006, 62, 7466-7470.	1.9	13
27	Palladium-Catalyzed Reaction of Aryl Bromides with 7-Hydroxy-1,3-Dienes. Organometallics, 2005, 24, 5909-5915.	2.3	25
28	Rhodium(I)-Catalyzed Intramolecular Cyclohexadienyl Pausonâ^'Khand Reaction:  Facile Approach to Tricarbocycles. Organometallics, 2004, 23, 792-799.	2.3	23