
Richard A Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5409025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FIGARO: The new horizontal neutron reflectometer at the ILL. European Physical Journal Plus, 2011, 126, 1.	2.6	201
2	Determinants for Membrane Fusion Induced by Cholesterol-Modified DNA Zippers. Journal of Physical Chemistry B, 2008, 112, 8264-8274.	2.6	112
3	Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Scientific Reports, 2018, 8, 6327.	3.3	97
4	Polymers and surfactants at fluid interfaces studied with specular neutron reflectometry. Advances in Colloid and Interface Science, 2017, 247, 130-148.	14.7	75
5	External Reflection FTIR Spectroscopy of the Cationic Surfactant Hexadecyltrimethylammonium Bromide (CTAB) on an Overflowing Cylinder. Langmuir, 2004, 20, 8740-8753.	3.5	74
6	General Physical Description of the Behavior of Oppositely Charged Polyelectrolyte/Surfactant Mixtures at the Air/Water Interface. Langmuir, 2017, 33, 5915-5924.	3.5	72
7	Direct Impact of Nonequilibrium Aggregates on the Structure and Morphology of Pdadmac/SDS Layers at the Air/Water Interface. Langmuir, 2014, 30, 8664-8674.	3.5	66
8	Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques. Advances in Colloid and Interface Science, 2020, 277, 102118.	14.7	64
9	New Perspective on the Cliff Edge Peak in the Surface Tension of Oppositely Charged Polyelectrolyte/Surfactant Mixtures. Journal of Physical Chemistry Letters, 2010, 1, 3021-3026.	4.6	61
10	Effects of Bulk Colloidal Stability on Adsorption Layers of Poly(diallyldimethylammonium) Tj ETQq0 0 0 rgBT /Ov Journal of Physical Chemistry B, 2011, 115, 15202-15213.	erlock 10 2.6	Tf 50 387 Td 57
11	Adsorption of cubic liquid crystalline nanoparticles on model membranes. Soft Matter, 2008, 4, 2267.	2.7	56
12	Effects of Aggregates on Mixed Adsorption Layers of Poly(ethylene imine) and Sodium Dodecyl Sulfate at the Air/Liquid Interface. Langmuir, 2009, 25, 4036-4046.	3.5	55
13	On the Ability of PAMAM Dendrimers and Dendrimer/DNA Aggregates To Penetrate POPC Model Biomembranes. Journal of Physical Chemistry B, 2010, 114, 7229-7244.	2.6	53
14	Solvent Extraction: Structure of the Liquid–Liquid Interface Containing a Diamide Ligand. Angewandte Chemie - International Edition, 2016, 55, 9326-9330.	13.8	53
15	Micellization of alkyltrimethylammonium bromide surfactants in choline chloride:glycerol deep eutectic solvent. Physical Chemistry Chemical Physics, 2016, 18, 33240-33249.	2.8	53
16	Structure of surfactant and phospholipid monolayers at the air/water interface modeled from neutron reflectivity data. Journal of Colloid and Interface Science, 2018, 531, 98-108.	9.4	52
17	Neutron Reflectivity Studies of the Interaction of Cubic-Phase Nanoparticles with Phospholipid Bilayers of Different Coverage. Langmuir, 2009, 25, 4009-4020.	3.5	51
18	Polyelectrolyte/surfactant films spread from neutral aggregates. Soft Matter, 2016, 12, 5304-5312.	2.7	51

#	Article	IF	CITATIONS
19	Smart nanogels at the air/water interface: structural studies by neutron reflectivity. Nanoscale, 2016, 8, 4951-4960.	5.6	50
20	Degradation and Rearrangement of a Lung Surfactant Lipid at the Air–Water Interface during Exposure to the Pollutant Gas Ozone. Langmuir, 2013, 29, 4594-4602.	3.5	48
21	Adsorption of Sophorolipid Biosurfactants on Their Own and Mixed with Sodium Dodecyl Benzene Sulfonate, at the Air/Water Interface. Langmuir, 2011, 27, 8854-8866.	3.5	46
22	Effects of bulk aggregation on PEl–SDS monolayers at the dynamic air–liquid interface: depletion due to precipitation versus enrichment by a convection/spreading mechanism. Soft Matter, 2013, 9, 6103.	2.7	46
23	Adsorption Behavior of Hydrophobin and Hydrophobin/Surfactant Mixtures at the Air–Water Interface. Langmuir, 2011, 27, 11316-11323.	3.5	45
24	Towards understanding the behavior of polyelectrolyte–surfactant mixtures at the water/vapor interface closer to technologically-relevant conditions. Physical Chemistry Chemical Physics, 2018, 20, 1395-1407.	2.8	45
25	Ozonolysis of methyl oleate monolayers at the air–water interface: oxidation kinetics, reaction products and atmospheric implications. Physical Chemistry Chemical Physics, 2014, 16, 13220-13228.	2.8	44
26	Effects of Aggregate Charge and Subphase Ionic Strength on the Properties of Spread Polyelectrolyte/Surfactant Films at the Air/Water Interface under Static and Dynamic Conditions. Langmuir, 2018, 34, 2312-2323.	3.5	44
27	Dynamics of Adsorption of an Oppositely Charged Polymerâ^'Surfactant Mixture at the Airâ^'Water Interface:Â Poly(dimethyldiallylammonium chloride) and Sodium Dodecyl Sulfate. Langmuir, 2007, 23, 3242-3253.	3.5	42
28	Study of the Liquid/Vapor Interfacial Properties of Concentrated Polyelectrolyte–Surfactant Mixtures Using Surface Tensiometry and Neutron Reflectometry: Equilibrium, Adsorption Kinetics, and Dilational Rheology. Journal of Physical Chemistry C, 2018, 122, 4419-4427.	3.1	42
29	New Method to Predict the Surface Tension of Complex Synthetic and Biological Polyelectrolyte/Surfactant Mixtures. Langmuir, 2013, 29, 11554-11559.	3.5	41
30	Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide. Colloids and Surfaces B: Biointerfaces, 2017, 150, 308-316.	5.0	41
31	Recent advances in resolving kinetic and dynamic processes at the air/water interface using specular neutron reflectometry. Current Opinion in Colloid and Interface Science, 2018, 37, 49-60.	7.4	41
32	Multilayers at Interfaces of an Oppositely Charged Polyelectrolyte/Surfactant System Resulting from the Transport of Bulk Aggregates under Gravity. Journal of Physical Chemistry B, 2012, 116, 7981-7990.	2.6	40
33	Effects of Ionic Strength on the Surface Tension and Nonequilibrium Interfacial Characteristics of Poly(sodium styrenesulfonate)/Dodecyltrimethylammonium Bromide Mixtures. Langmuir, 2014, 30, 4970-4979.	3.5	40
34	Dynamic Adsorption of Weakly Interacting Polymer/Surfactant Mixtures at the Air/Water Interface. Langmuir, 2012, 28, 12479-12492.	3.5	38
35	An improved algorithm for reducing reflectometry data involving divergent beams or non-flat samples. Journal of Applied Crystallography, 2015, 48, 2006-2011.	4.5	37
36	Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. International Journal of Pharmaceutics, 2020, 590, 119926.	5.2	37

#	Article	IF	CITATIONS
37	Interactions between DNA and Poly(amido amine) Dendrimers on Silica Surfaces. Langmuir, 2010, 26, 8625-8635.	3.5	35
38	Changes to DPPC Domain Structure in the Presence of Carbon Nanoparticles. Langmuir, 2017, 33, 10374-10384.	3.5	28
39	Influence of Acyl Chain Saturation on the Membrane-Binding Activity of a Short Antimicrobial Peptide. ACS Omega, 2017, 2, 7482-7492.	3.5	28
40	Adsorption Kinetics in Binary Surfactant Mixtures Studied with External Reflection FTIR Spectroscopyâ€. Journal of Physical Chemistry C, 2007, 111, 8757-8774.	3.1	27
41	Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B). Biochemistry, 2015, 54, 5185-5197.	2.5	27
42	Perdeuteration of cholesterol for neutron scattering applications using recombinant Pichia pastoris. Chemistry and Physics of Lipids, 2018, 212, 80-87.	3.2	27
43	Interactions of anticancer drugs doxorubicin and idarubicin with lipid monolayers: New insight into the composition, structure and morphology. Journal of Colloid and Interface Science, 2021, 581, 403-416.	9.4	27
44	Adsorption of Denaturated Lysozyme at the Air–Water Interface: Structure and Morphology. Langmuir, 2018, 34, 5020-5029.	3.5	24
45	Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chemical Science, 2020, 11, 2085-2092.	7.4	23
46	Neutron reflectometry to investigate the delivery of lipids and DNA to interfaces (Review). Biointerphases, 2008, 3, FB64-FB82.	1.6	22
47	Surface Adsorption of Oppositely Charged C14TAB-PAMPS Mixtures at the Air/Water Interface and the Impact on Foam Film Stability. Journal of Physical Chemistry B, 2015, 119, 348-358.	2.6	22
48	Novel evaluation method of neutron reflectivity data applied to stimulus-responsive polymer brushes. Soft Matter, 2008, 4, 500.	2.7	21
49	Antibody adsorption on the surface of water studied by neutron reflection. MAbs, 2017, 9, 466-475.	5.2	21
50	Adsorption kinetics of ammonium perfluorononanoate at the air–water interface. Physical Chemistry Chemical Physics, 2004, 6, 5061-5065.	2.8	20
51	Adsorption of Intact Cubic Liquid Crystalline Nanoparticles on Hydrophilic Surfaces: Lateral Organization, Interfacial Stability, Layer Structure, and Interaction Mechanism. Journal of Physical Chemistry C, 2009, 113, 4483-4494.	3.1	20
52	Measurement of the Dynamic Surface Excess of the Nonionic Surfactant C8E4OMe by Neutron Reflection and Ellipsometry. Langmuir, 2003, 19, 5960-5962.	3.5	19
53	Nighttime oxidation of surfactants at the air–water interface: effects of chain length, head group and saturation. Atmospheric Chemistry and Physics, 2018, 18, 3249-3268.	4.9	19
54	β-Lactoglobulin Adsorption Layers at the Water/Air Surface: 3. Neutron Reflectometry Study on the Effect of pH. Journal of Physical Chemistry B, 2019, 123, 10877-10889.	2.6	19

#	Article	IF	CITATIONS
55	New structural approach to rationalize the foam film stability of oppositely charged polyelectrolyte/surfactant mixtures. Chemical Communications, 2020, 56, 952-955.	4.1	19
56	Interactions of PAMAM Dendrimers with SDS at the Solid–Liquid Interface. Langmuir, 2013, 29, 5817-5831.	3.5	18
57	Complex Behavior of Aqueous α-Cyclodextrin Solutions. Interfacial Morphologies Resulting from Bulk Aggregation. Langmuir, 2016, 32, 6682-6690.	3.5	18
58	Polydopamine layer formation at the liquid – gas interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123637.	4.7	18
59	Nucleic Acid-Loaded Lipid Nanoparticle Interactions with Model Endosomal Membranes. ACS Applied Materials & Interfaces, 2022, 14, 30371-30384.	8.0	18
60	A Versatile Method for the Distance-Dependent Structural Characterization of Interacting Soft Interfaces by Neutron Reflectometry. Langmuir, 2018, 34, 789-800.	3.5	17
61	Synergy, competition, and the "hanging―polymer layer: Interactions between a neutral amphiphilic â€`tardigrade' comb co-polymer with an anionic surfactant at the air-water interface. Journal of Colloid and Interface Science, 2020, 561, 181-194.	9.4	17
62	Photo-Switchable Surfactants for Responsive Air–Water Interfaces: Azo versus Arylazopyrazole Amphiphiles. Journal of Physical Chemistry B, 2020, 124, 6913-6923.	2.6	17
63	Spread Films of Human Serum Albumin at the Air–Water Interface: Optimization, Morphology, and Durability. Langmuir, 2015, 31, 13535-13542.	3.5	16
64	Membrane interactions of antimicrobial peptide-loaded microgels. Journal of Colloid and Interface Science, 2020, 562, 322-332.	9.4	16
65	Adsorption of Mixtures of Poly(amidoamine) Dendrimers and Sodium Dodecyl Sulfate at the Air–Water Interface. Langmuir, 2014, 30, 5817-5828.	3.5	15
66	Adsorption versus aggregation of NIPAM nanogels: new insight into their behaviour at the air/water interface as a function of concentration. Physical Chemistry Chemical Physics, 2017, 19, 17173-17179.	2.8	15
67	Competitive Adsorption of Neutral Comb Polymers and Sodium Dodecyl Sulfate at the Air/Water Interface. Journal of Physical Chemistry B, 2008, 112, 7410-7419.	2.6	14
68	Dynamic surface elasticity of mixed poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate/NaCl solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 3-10.	4.7	14
69	Human serum albumin binding to silica nanoparticles – effect of protein fatty acid ligand. Physical Chemistry Chemical Physics, 2014, 16, 10157-10168.	2.8	14
70	Synergetic effect of sodium polystyrene sulfonate and guanidine hydrochloride on the surface properties of lysozyme solutions. RSC Advances, 2015, 5, 7413-7422.	3.6	14
71	Highly viscoelastic films at the water/air interface: α-Cyclodextrin with anionic surfactants. Journal of Colloid and Interface Science, 2020, 565, 601-613.	9.4	14
72	Growth-collapse mechanism of PEI-CTAB films at the air–water interface. Soft Matter, 2011, 7, 11125.	2.7	13

#	Article	IF	CITATIONS
73	Insights into Extended Structures and Their Driving Force: Influence of Salt on Polyelectrolyte/Surfactant Mixtures at the Air/Water Interface. ACS Applied Materials & Interfaces, 2022, 14, 27347-27359.	8.0	13
74	Structure of DNA–Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry. Langmuir, 2011, 27, 12506-12514.	3.5	12
75	Towards optimised drug delivery: structure and composition of testosterone enanthate in sodium dodecyl sulfate monolayers. Soft Matter, 2018, 14, 3135-3150.	2.7	12
76	External-reflection FT-IR spectroscopy of C10E8 at an expanding water surface. Vibrational Spectroscopy, 2004, 35, 205-211.	2.2	11
77	In situ neutron reflectometry study of the near-surface solvent concentration profile during solution casting. Soft Matter, 2011, 7, 6648.	2.7	11
78	Interactions of Small Dendrimers with Sodium Dodecyl Sulfate at the Air–Water Interface. Journal of Physical Chemistry B, 2014, 118, 11835-11848.	2.6	11
79	Complementarity of neutron reflectometry and ellipsometry for the study of atmospheric reactions at the air–water interface. RSC Advances, 2015, 5, 107105-107111.	3.6	11
80	Interactions between model cell membranes and the neuroactive drug propofol. Journal of Colloid and Interface Science, 2018, 526, 230-243.	9.4	11
81	The reaction of oleic acid monolayers with gas-phase ozone at the air water interface: the effect of sub-phase viscosity, and inert secondary components. Physical Chemistry Chemical Physics, 2020, 22, 28032-28044.	2.8	11
82	Interaction of sodium dodecyl sulfate and high charge density comb polymers at the silica/water interface. Soft Matter, 2009, 5, 3646.	2.7	10
83	Reflectometry Reveals Accumulation of Surfactant Impurities at Bare Oil/Water Interfaces. Molecules, 2019, 24, 4113.	3.8	10
84	First quantitative assessment of the adsorption of a fluorocarbon gas on phospholipid monolayers at the air/water interface. Journal of Colloid and Interface Science, 2021, 593, 1-10.	9.4	10
85	On the formation of dendrimer/nucleolipids surface films for directed self-assembly. Soft Matter, 2015, 11, 1973-1990.	2.7	9
86	Bayesian determination of the effect of a deep eutectic solvent on the structure of lipid monolayers. Physical Chemistry Chemical Physics, 2019, 21, 6133-6141.	2.8	9
87	Structural elucidation upon binding of antimicrobial peptides into binary mixed lipid monolayers mimicking bacterial membranes. Journal of Colloid and Interface Science, 2021, 598, 193-205.	9.4	9
88	External Reflection Fourier Transform Infrared Spectroscopy of Surfactants at the Air—Water Interface: Separation of Bulk and Adsorbed Surfactant Signals. Applied Spectroscopy, 2005, 59, 993-1001.	2.2	8
89	Key Factors Regulating the Mass Delivery of Macromolecules to Model Cell Membranes: Gravity and Electrostatics. ACS Macro Letters, 2014, 3, 121-125.	4.8	7
90	Solvent Extraction: Structure of the Liquid–Liquid Interface Containing a Diamide Ligand. Angewandte Chemie, 2016, 128, 9472-9476.	2.0	7

#	Article	IF	CITATIONS
91	Network Formation of DNA/Polyelectrolyte Fibrous Aggregates Adsorbed at the Water–Air Interface. Langmuir, 2019, 35, 13967-13976.	3.5	7
92	The dynamic properties of PDA-laccase films at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124930.	4.7	7
93	Molecular recognition of nucleic acids by nucleolipid/dendrimer surface complexes. Soft Matter, 2014, 10, 8401-8405.	2.7	6
94	Current Frontiers on Liquid-Liquid Interfaces Workshop. Neutron News, 2016, 27, 21-22.	0.2	6
95	3D texturing of the air–water interface by biomimetic self-assembly. Nanoscale Horizons, 2020, 5, 839-846.	8.0	6
96	On the formation of inclusion complexes at the solid/liquid interface of anchored temperature-responsive PNIPAAM diblock copolymers with Î ³ -cyclodextrin. Colloid and Polymer Science, 2017, 295, 1327-1341.	2.1	5
97	DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface. Polymers, 2021, 13, 2820.	4.5	5
98	Responsive Material and Interfacial Properties through Remote Control of Polyelectrolyte–Surfactant Mixtures. ACS Applied Materials & Interfaces, 2022, 14, 4656-4667.	8.0	5
99	Dynamic Surface Properties of Mixed Dispersions of Silica Nanoparticles and Lysozyme. Journal of Physical Chemistry B, 2019, 123, 4803-4812.	2.6	4
100	The interaction of styrene maleic acid copolymers with phospholipids in Langmuir monolayers, vesicles and nanodiscs; a structural study. Journal of Colloid and Interface Science, 2022, 625, 220-236.	9.4	4
101	Tuneable interfacial surfactant aggregates mimic lyotropic phases and facilitate large scale nanopatterning. Nanoscale, 2021, 13, 371-379.	5.6	3
102	Nanostructure of the "protein-nanoparticle corona" an indicator of toxicity?. , 2010, , .		2
103	Interfacial properties of POPC/GDO liquid crystalline nanoparticles deposited on anionic and cationic silica surfaces. Physical Chemistry Chemical Physics, 2016, 18, 26630-26642.	2.8	2
104	News and Report. Neutron News, 2009, 20, 40-40.	0.2	1
105	Propofol adsorption at the air/water interface: a combined vibrational sum frequency spectroscopy, nuclear magnetic resonance and neutron reflectometry study. Soft Matter, 2019, 15, 38-46.	2.7	1
106	Species-Specific Urothelial Toxicity With an Anti-HIV Noncatalytic Site Integrase Inhibitor (NCINI) Is Related to Unusual pH-Dependent Physicochemical Changes. Toxicological Sciences, 2021, 183, 105-116.	3.1	1
107	Interfacial complexation of a neutral amphiphilic â€ [~] tardigrade' co-polymer with a cationic surfactant: Transition from synergy to competition. Journal of Colloid and Interface Science, 2022, 606, 1064-1076.	9.4	1
108	Scientific Highlights from FIGARO's First Year. Neutron News, 2010, 21, 19-21.	0.2	0

#	Article	IF	CITATIONS
109	Experimental Approaches and Related Theories. Progress in Colloid and Interface Science, 2015, , 59-82.	0.0	ο