
Edward Cussler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5408784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Desorption in Ammonia Manufacture from Stranded Wind Energy. ACS Sustainable Chemistry and Engineering, 2020, 8, 15475-15483.	3.2	6
2	Optimizing Ammonia Separation via Reactive Absorption for Sustainable Ammonia Synthesis. ACS Applied Energy Materials, 2020, 3, 2576-2584.	2.5	24
3	Integrated Ammonia Synthesis and Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 18785-18792.	3.2	35
4	Efficient Water Pollution Abatement. Industrial & Engineering Chemistry Research, 2019, 58, 22483-22487.	1.8	7
5	Optimizing the Conditions for Ammonia Production Using Absorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 4019-4029.	3.2	28
6	Better Absorbents for Ammonia Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 6536-6546.	3.2	63
7	Converting Wind Energy to Ammonia at Lower Pressure. ACS Sustainable Chemistry and Engineering, 2018, 6, 827-834.	3.2	49
8	Modeling and Optimal Design of Absorbent Enhanced Ammonia Synthesis. Processes, 2018, 6, 91.	1.3	57
9	Rates of Ammonia Absorption and Release in Calcium Chloride. ACS Sustainable Chemistry and Engineering, 2018, 6, 11827-11835.	3.2	31
10	Volume diffusion in purification by sublimation. AICHE Journal, 2017, 63, 1757-1764.	1.8	1
11	Column absorption for reproducible cyclic separation in small scale ammonia synthesis. AICHE Journal, 2017, 63, 3058-3068.	1.8	37
12	Ammonia Synthesis at Low Pressure. Journal of Visualized Experiments, 2017, , .	0.2	5
13	Effect of Rapid Pressurization on the Solubility of Small Organic Molecules. Crystal Growth and Design, 2016, 16, 1404-1408.	1.4	4
14	Sublimation as a function of diffusion. AICHE Journal, 2016, 62, 861-867.	1.8	3
15	More effective membrane chromatography. AICHE Journal, 2015, 61, 3871-3878.	1.8	8
16	The future of the lecture. AICHE Journal, 2015, 61, 1472-1477.	1.8	8
17	Ammonia synthesis enhanced by magnesium chloride absorption. AICHE Journal, 2015, 61, 1364-1371.	1.8	24
18	Understanding rateâ€limiting processes for the sublimation of small molecule organic semiconductors. AICHE Journal, 2014, 60, 1347-1354.	1.8	10

EDWARD CUSSLER

#	Article	IF	CITATIONS
19	Ammonia absorption at haber process conditions. AICHE Journal, 2012, 58, 3526-3532.	1.8	30
20	On separation efficiency. AICHE Journal, 2012, 58, 3825-3831.	1.8	44
21	Cylinder Orientation Mechanism in Block Copolymer Thin Films Upon Solvent Evaporation. Macromolecules, 2010, 43, 7763-7770.	2.2	193
22	Self-Assembled Block Copolymer Thin Films as Water Filtration Membranes. ACS Applied Materials & Interfaces, 2010, 2, 847-853.	4.0	366
23	Fundamentals of Mass Transfer. , 2009, , 237-273.		21
24	Sorptive and Reactive Scavenger-Containing Sandwich Membranes as Contaminant Barriers. Journal of Environmental Engineering, ASCE, 2009, 135, 69-76.	0.7	4
25	Diffusion in nanoporous materials made from block copolymers. Crystallography Reviews, 2006, 12, 13-24.	0.4	15
26	The third parameter in reactive barrier films. AICHE Journal, 2005, 51, 456-463.	1.8	20
27	Will humans swim faster or slower in syrup?. AICHE Journal, 2004, 50, 2646-2647.	1.8	7
28	Polymer-zeolite composite membranes for direct methanol fuel cells. AICHE Journal, 2003, 49, 991-1001.	1.8	121
29	Chemical product engineering. AICHE Journal, 2003, 49, 1072-1075.	1.8	82
30	Distillation in hollow fibers. AICHE Journal, 2003, 49, 2344-2351.	1.8	30
31	Mechanisms of photoresist dissolution. AICHE Journal, 2002, 48, 661-672.	1.8	23
32	Reactive barrier films. AICHE Journal, 2001, 47, 295-302.	1.8	86
33	Oxygen barriers that use free radical chemistry. AICHE Journal, 2001, 47, 2725-2732.	1.8	17
34	Possible air separations with superconducting membranes. AICHE Journal, 1999, 45, 2313-2325.	1.8	10
35	Coreâ	6.6	194
36	Adsorption of Oxygen on YBa2Cu3O7-xand (Bi,Pb)2Sr2Ca2Cu3OxSuperconducting Adsorbents. Langmuir, 1999, 15, 3950-3955.	1.6	4

EDWARD CUSSLER

#	Article	IF	CITATIONS
37	Microporous Vanadium Pentaoxide. 2. Making Solids from Colloidal Microemulsions. Langmuir, 1998, 14, 277-282.	1.6	8
38	Microporous Vanadium Pentaoxide. 1. Vanadyl Isopropoxide in Microemulsions. Langmuir, 1997, 13, 1496-1500.	1.6	5
39	Barrier membranes with tipped impermeable flakes. AICHE Journal, 1996, 42, 2-9.	1.8	89
40	Hollow Fiber Array Affinity Chromatography. Biotechnology Progress, 1995, 11, 651-658.	1.3	18
41	Silica gels made by bicontinuous microemulsion polymerization. AICHE Journal, 1995, 41, 159-165.	1.8	23
42	Organic microporous materials made by bicontinuous microemulsion polymerization. AICHE Journal, 1995, 41, 907-914.	1.8	36
43	Copper selective adsorption with a microemulsion-based resin. AICHE Journal, 1995, 41, 1165-1170.	1.8	9
44	Gas separations in hollow-fiber adsorbers. AICHE Journal, 1995, 41, 1413-1425.	1.8	16
45	Polydisperse tube diameters compromise multiple open tubular chromatographyw. AICHE Journal, 1993, 39, 946-953.	1.8	34
46	Racemic leucine separation by hollow-fiber extraction. AICHE Journal, 1992, 38, 1493-1498.	1.8	97
47	Fractional extraction with hollow fibers with hydrogel-filled walls. AICHE Journal, 1991, 37, 855-862.	1.8	33
48	Hydrogels as Ultrafiltration Devices. Separation and Purification Reviews, 1989, 18, 177-192.	0.8	9
49	Hollow-fiber liquid chromatography. AICHE Journal, 1989, 35, 814-820.	1.8	40
50	Bioseparations, Especially by Hollow Fibers. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 944-948.	0.9	4
51	Protein extractions with hollow fibers. AICHE Journal, 1988, 34, 130-136.	1.8	225
52	Theories of precipitation induced by dissolution. AICHE Journal, 1988, 34, 2005-2010.	1.8	10
53	Temperature Sensitive Gels as Size Selective Absorbants. Separation Science and Technology, 1987, 22, 911-919.	1.3	120
54	A hollow-fiber trickle-bed reactor. AICHE Journal, 1987, 33, 1754-1756.	1.8	9

#	Article	IF	CITATIONS
55	Designing hollow-fiber contactors. AICHE Journal, 1986, 32, 1910-1916.	1.8	603
56	Hollow fiber gas membranes. AICHE Journal, 1985, 31, 1548-1553.	1.8	97
57	Gels as size selective extraction solvents. AICHE Journal, 1984, 30, 578-582.	1.8	147
58	Liquid Membrane Separations of Potassium lodide from Mixed Brines. Separation Science and Technology, 1984, 19, 963-975.	1.3	5
59	Predicting the Texture of Liquid and Melting Semi-Solid Foods. Journal of Food Science, 1983, 48, 1221-1225.	1.5	119
60	Selective electrorefining with liquid membranes. AICHE Journal, 1983, 29, 144-149.	1.8	8
61	Dissolution and reprecipitation in porous solids. AICHE Journal, 1982, 28, 500-508.	1.8	23