Michiko Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5408728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glial cells express N-CAM/D2-CAM-like polypeptides in vitro. Nature, 1985, 316, 725-728.	13.7	190
2	Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17115-17120.	3.3	159
3	The Pros and Cons of Apoptosis Assays for Use in the Study of Cells, Tissues, and Organs. Microscopy and Microanalysis, 2002, 8, 375-391.	0.2	114
4	Changing Activation Sequence in the Embryonic Chick Heart. Circulation Research, 1997, 81, 470-476.	2.0	82
5	Formation of the retinal ganglion cell and optic fiber layers. Journal of Neurobiology, 1991, 22, 85-96.	3.7	73
6	Cited2, a coactivator of HNF4α, is essential for liver development. EMBO Journal, 2007, 26, 4445-4456.	3.5	70
7	Hypoxia-responsive signaling regulates the apoptosis-dependent remodeling of the embryonic avian cardiac outflow tract. Developmental Biology, 2004, 273, 285-296.	0.9	60
8	Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H414-H421.	1.5	59
9	Partial rescue of defects in Cited2-deficient embryos by HIF-1α heterozygosity. Developmental Biology, 2007, 301, 130-140.	0.9	58
10	Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography. Journal of Biomedical Optics, 2010, 15, 066022.	1.4	57
11	Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H879-H891.	1.5	56
12	Differential levels of tissue hypoxia in the developing chicken heart. Developmental Dynamics, 2006, 235, 115-123.	0.8	55
13	Differential expression of PSA-NCAM and HNK-1 epitopes in the developing cardiac conduction system of the chick. , 1997, 209, 182-195.		51
14	4D shear stress maps of the developing heart using Doppler optical coherence tomography. Biomedical Optics Express, 2012, 3, 3022.	1.5	50
15	Role of myocardial hypoxia in the remodeling of the embryonic avian cardiac outflow tract. Developmental Biology, 2004, 267, 294-308.	0.9	44
16	Longitudinal Imaging of Heart Development With Optical Coherence Tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1166-1175.	1.9	43
17	Altered hypoxiaâ€inducible factorâ€1 alpha expression levels correlate with coronary vessel anomalies. Developmental Dynamics, 2009, 238, 2688-2700.	0.8	41
18	Apoptosis in the developing mouse heart. Developmental Dynamics, 2006, 235, 2592-2602.	0.8	38

ΜΙCΗΙΚΟ WATANABE

#	Article	IF	CITATIONS
19	Cardiac expression of polysialylated NCAM in the chicken embryo: Correlation with the ventricular conduction system. Developmental Dynamics, 1992, 194, 128-141.	0.8	33
20	Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium. Developmental Biology, 2013, 376, 136-149.	0.9	29
21	Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease. Congenital Heart Disease, 2017, 12, 322-331.	0.0	28
22	Supplementation with the Methyl Donor Betaine Prevents Congenital Defects Induced by Prenatal Alcohol Exposure. Alcoholism: Clinical and Experimental Research, 2017, 41, 1917-1927.	1.4	28
23	Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure. Developmental Dynamics, 2015, 244, 607-618.	0.8	27
24	Ultrastructural analysis of polysialylated neural cell adhesion molecule in the suprachiasmatic nuclei of the adult mouse. , 1999, 256, 448-457.		26
25	Expression of active Notch1 in avian coronary development. Developmental Dynamics, 2009, 238, 162-170.	0.8	25
26	Optical coherence tomography captures rapid hemodynamic responses to acute hypoxia in the cardiovascular system of early embryos. Developmental Dynamics, 2012, 241, 534-544.	0.8	23
27	Capturing structure and function in an embryonic heart with biophotonic tools. Frontiers in Physiology, 2014, 5, 351.	1.3	23
28	Expression of Lymphatic Markers During Avian and Mouse Cardiogenesis. Anatomical Record, 2010, 293, 259-270.	0.8	22
29	Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1150-H1159.	1.5	21
30	Emerging patterns of cardiac conduction in the chick embryo: Waveform analysis with photodiode array-based optical imaging. Developmental Dynamics, 2005, 233, 456-465.	0.8	19
31	Optical stimulation enables paced electrophysiological studies in embryonic hearts. Biomedical Optics Express, 2014, 5, 1000.	1.5	19
32	Expression of exogenous protein and analysis of morphogenesis in the developing chicken heart using an adenoviral vector. Cardiovascular Research, 1996, 31, E86-E95.	1.8	17
33	Connecting teratogenâ€induced congenital heart defects to neural crest cells and their effect on cardiac function. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 227-250.	3.6	17
34	Hypoxia Supports Epicardial Cell Differentiation in Vascular Smooth Muscle Cells through the Activation of the TGFβ Pathway. Journal of Cardiovascular Development and Disease, 2018, 5, 19.	0.8	15
35	Functional imaging of the embryonic pacemaking and cardiac conduction system over the past 150 years: Technologies to overcome the challenges. The Anatomical Record, 2004, 280A, 980-989.	2.3	14
36	Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography. Journal of Biomedical Optics, 2014, 19, 076004.	1.4	14

ΜΙCΗΙΚΟ WATANABE

#	Article	IF	CITATIONS
37	Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited]. Biomedical Optics Express, 2017, 8, 1823.	1.5	14
38	Altering HIF-1α Through 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) Exposure Affects Coronary Vessel Development. Cardiovascular Toxicology, 2013, 13, 161-167.	1.1	10
39	Volumetric optical mapping in early embryonic hearts using light-sheet microscopy. Biomedical Optics Express, 2016, 7, 5120.	1.5	10
40	High-Speed Optical Coherence Tomography Imaging of the Beating Avian Embryonic Heart. Cold Spring Harbor Protocols, 2011, 2011, pdb.top98-pdb.top98.	0.2	9
41	Glutathione Protects the Developing Heart from Defects and Global DNA Hypomethylation Induced by Prenatal Alcohol Exposure. Alcoholism: Clinical and Experimental Research, 2021, 45, 69-78.	1.4	9
42	Adhesion and junction molecules in embryonic and adult lens cell differentiation. Acta Ophthalmologica, 1992, 70, 46-52.	0.6	7
43	Probing the Electrophysiology of the Developing Heart. Journal of Cardiovascular Development and Disease, 2016, 3, 10.	0.8	6
44	SLIME: robust, high-speed 3D microvascular mapping. Scientific Reports, 2019, 9, 893.	1.6	5
45	Three-dimensional alignment of microvasculature and cardiomyocytes in the developing ventricle. Scientific Reports, 2020, 10, 14955.	1.6	5
46	Developmental Transitions in Cardiac Conduction. Novartis Foundation Symposium, 2008, , 68-79.	1.2	4
47	Folic acid prevents functional and structural heart defects induced by prenatal ethanol exposure. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1313-H1320.	1.5	4
48	Prenatal ethanol exposure impairs the conduction delay at the atrioventricular junction in the looping heart. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H294-H305.	1.5	3
49	Differential immunostaining patterns of transient receptor potential (<scp>TRP</scp>) ion channels in the rat nodose ganglion. Journal of Anatomy, 2022, , .	0.9	3
50	Introduction to "Stem Cells―special issue. Birth Defects Research, 2022, 114, 921-925.	0.8	3
51	Cardiac Vasculature: Development and Pathology. , 2011, , .		2
52	The teenage brain issue. Birth Defects Research, 2017, 109, 1611-1612.	0.8	2
53	Special issue on "Developmental effects of smoking, vaping, and cannabis use― Birth Defects Research, 2019, 111, 1245-1247.	0.8	2
54	Developmental transitions in cardiac conduction. Novartis Foundation Symposium, 2003, 250, 68-75; discussion 76-9, 276-9.	1.2	2

ΜΙCΗΙΚΟ WATANABE

#	Article	IF	CITATIONS
55	VESGEN 2D: Automated, User-Interactive Software for Quantification and Mapping of Angiogenic and Lymphangiogenic Trees and Networks. Anatomical Record, 2009, 292, spc1-spc1.	0.8	1
56	Coronary Branching Patterns Linked to Polymorphisms in the Hypoxia-Inducible Factor-1 Alpha Gene. Cardiology, 2012, 121, 261-262.	0.6	1
57	Editorial: Mechanotransduction and development of cardiovascular form and function. Frontiers in Physiology, 2015, 6, 131.	1.3	1
58	Introduction to "The Trouble with Plastics―special issue. Birth Defects Research, 2020, 112, 1297-1299.	0.8	1
59	Kruppel Like Factor 15 is a Critical Regulator of Angiotensin II Mediated Vascular Remodeling. FASEB Journal, 2009, 23, 637.7.	0.2	1
60	Cardiomyocyte Apoptosis in the Outflow Tract in Normal and Abnormal Cardiogenesis. Microscopy and Microanalysis, 2001, 7, 594-595.	0.2	0
61	Molecules and microbes and cells, Oh My! What mothers give to us besides genes. Birth Defects Research, 2018, 110, 1491-1493.	0.8	Ο
62	Introduction to a special reviews issue: Three-dimensional printing to the rescue. Birth Defects Research, 2018, 110, 1053-1054.	0.8	0
63	Introduction to "fetal interventions to alleviate heart defects― Birth Defects Research, 2019, 111, 367-369.	0.8	Ο
64	Introduction to the focus on "the immune system from placenta to birth― Birth Defects Research, 2019, 111, 175-177.	0.8	0
65	Introduction to a focus on "Novel uses of technology to diagnose and better treat birth defects― Birth Defects Research, 2020, 112, 129-130.	0.8	Ο
66	Introduction to the special issue on orofacial clefts. Birth Defects Research, 2020, 112, 1555-1557.	0.8	0
67	Introduction to the special issue on " <scp>RASopathies</scp> : Misregulation of signaling― Birth Defects Research, 2020, 112, 703-707.	0.8	Ο
68	Introduction to the special issue on "Genetic Screening and Testing― Birth Defects Research, 2020, 112, 289-292.	0.8	0
69	Introduction for the special issue on "exercise during pregnancy― Birth Defects Research, 2021, 113, 209-213.	0.8	Ο
70	Introduction to the special focus on the development of the autonomic nervous system. Birth Defects Research, 2021, 113, 843-844.	0.8	0
71	Prenatal alcohol exposure causes structural and functional cardiac defects, which can be prevented with folate supplementation. FASEB Journal, 2021, 35, .	0.2	0
72	Expression Analysis of CITED2 mRNA During Chicken Heart Development. FASEB Journal, 2007, 21, A200.	0.2	0

#	Article	IF	CITATIONS
73	Lymphatics of the Avian Embryonic Heart. FASEB Journal, 2007, 21, A230.	0.2	0
74	Altered hypoxia inducible factorâ€1 alpha levels correlate with major coronary vessel defects. FASEB Journal, 2007, 21, A232.	0.2	0
75	Rapid Quantification of Normal and Abnormal Blood and Lymphatic Vasculature. FASEB Journal, 2007, 21, A88.	0.2	0
76	2,3,7,8â€ŧetrachlorodibenzoâ€pâ€dioxin (TCDD) reduces hypoxiaâ€inducible factorâ€1 alpha nuclear localization within cardiac tissues during chick embryo development. FASEB Journal, 2007, 21, A200.	0.2	0
77	Inducible reexpression of HEXIM1 activates physiological rather than pathological responses in the adult heart. FASEB Journal, 2012, 26, 526.2.	0.2	0
78	Localization and induced release of potentially therapeutic components of the rat submandibular salivary gland. FASEB Journal, 2019, 33, 446.3.	0.2	0