Victor M Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5408453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Construction and Building Materials, 2009, 23, 2487-2491.	3.2	551
2	Characterisation and use of biomass fly ash in cement-based materials. Journal of Hazardous Materials, 2009, 172, 1049-1060.	6.5	352
3	Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 354-361.	2.6	210
4	Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Construction and Building Materials, 2010, 24, 1432-1437.	3.2	186
5	Incorporation of titanium dioxide nanoparticles in mortars — Influence of microstructure in the hardened state properties and photocatalytic activity. Cement and Concrete Research, 2013, 43, 112-120.	4.6	168
6	Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution. Energy and Buildings, 2012, 49, 235-245.	3.1	167
7	Raman spectroscopy of CaTiO3-based perovskite solid solutions. Journal of Materials Research, 2004, 19, 488-495.	1.2	128
8	A Novel Dry Active Electrode for EEG Recording. IEEE Transactions on Biomedical Engineering, 2007, 54, 162-165.	2.5	124
9	DiC12: Magnesium titanate microwave dielectric ceramics. Ferroelectrics, 1992, 133, 127-132.	0.3	123
10	The effect of Cr and La on MgTiO ₃ and MgTiO ₃ –CaTiO ₃ microwave dielectric ceramics. Journal of Materials Research, 1997, 12, 3293-3299.	1.2	120
11	Biomass fly ash effect on fresh and hardened state properties of cement based materials. Composites Part B: Engineering, 2015, 77, 1-9.	5.9	112
12	Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization. International Journal of Mineral Processing, 2016, 149, 104-110.	2.6	103
13	Dielectric spectroscopy of MgTiO3-based ceramics in the 109–1014Hz region. Journal of Materials Science, 1993, 28, 5894-5900.	1.7	96
14	Rheology and hardened properties of single-coat render mortars with different types of water retaining agents. Construction and Building Materials, 2009, 23, 1141-1146.	3.2	91
15	Alkali activation of biomass fly ash–metakaolin blends. Fuel, 2012, 98, 265-271.	3.4	91
16	Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cement and Concrete Research, 2012, 42, 607-612.	4.6	87
17	Effects of a water-retaining agent on the rheological behaviour of a single-coat render mortar. Cement and Concrete Research, 2006, 36, 1257-1262.	4.6	77
18	Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars. Construction and Building Materials, 2012, 26, 687-693.	3.2	76

#	Article	IF	CITATIONS
19	Admixtures effect on fresh state properties of aerial lime based mortars. Construction and Building Materials, 2009, 23, 1147-1153.	3.2	75
20	A Scan-to-BIM Methodology Applied to Heritage Buildings. Heritage, 2020, 3, 47-67.	0.9	74
21	Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Construction and Building Materials, 2021, 283, 122757.	3.2	72
22	Formulation of mortars with nano-SiO2 and nano-TiO2 for degradation of pollutants in buildings. Composites Part B: Engineering, 2013, 44, 40-47.	5.9	69
23	Mortar formulations with bottom ash from biomass combustion. Construction and Building Materials, 2013, 45, 275-281.	3.2	67
24	Mortars based in different binders with incorporation of phase-change materials: Physical and mechanical properties. European Journal of Environmental and Civil Engineering, 2015, 19, 1216-1233.	1.0	63
25	Role of lightweight fillers on the properties of a mixed-binder mortar. Cement and Concrete Composites, 2010, 32, 19-24.	4.6	60
26	Bottom ash from biomass combustion in BFB and its use in adhesive-mortars. Fuel Processing Technology, 2015, 129, 192-202.	3.7	53
27	Ferroelectric relaxor behaviour of Na0.5Bi0.5TiO3–SrTiO3 ceramics. Physica Status Solidi (B): Basic Research, 2004, 241, 1949-1956.	0.7	51
28	Dielectric measurements on a novel Ba1 â^' x Ca x TiO3 (BCT) bulk ceramic combinatorial library. Journal of Electroceramics, 2009, 22, 245-251.	0.8	51
29	Latent heat storage in PCM containing mortars—Study of microstructural modifications. Energy and Buildings, 2013, 66, 724-731.	3.1	51
30	Development of mortars containing superabsorbent polymer. Construction and Building Materials, 2015, 95, 575-584.	3.2	51
31	Preparation and microwave dielectric properties of pure and doped magnesium titanate ceramics. Materials Research Bulletin, 1994, 29, 1017-1023.	2.7	47
32	Effect of nanosilica and microsilica on microstructure and hardened properties of cement pastes and mortars. Advances in Applied Ceramics, 2010, 109, 104-110.	0.6	45
33	Microstructure and hardened state properties on pozzolan-containing concrete. Construction and Building Materials, 2017, 140, 374-384.	3.2	45
34	Polyurethane foams with microencapsulated phase change material: Comparative analysis of thermal conductivity characterization approaches. Energy and Buildings, 2017, 153, 392-402.	3.1	44
35	Functionalization of mortars for controlling the indoor ambient of buildings. Energy and Buildings, 2014, 70, 224-236.	3.1	43
36	Mine Tailings Geopolymers as a Waste Management Solution for A More Sustainable Habitat. Sustainability, 2019, 11, 995.	1.6	43

#	Article	IF	CITATIONS
37	Dielectric properties of (1â^' x)La(Mg 1/2 Ti 1/2)O 3 – x SrTiO 3 ceramics. Journal of the European Ceramic Society, 2004, 24, 2995-3002.	2.8	42
38	Effect of cement partial substitution by waste-based biochar in mortars properties. Construction and Building Materials, 2021, 301, 124074.	3.2	42
39	Role of Niobium in Magnesium Titanate Microwave Dielectric Ceramics. Journal of the American Ceramic Society, 1996, 79, 1697-1698.	1.9	41
40	Structure and microwave dielectric properties of La(Mg0.5Ti0.5)O3–CaTiO3 system. Journal of the European Ceramic Society, 2003, 23, 2403-2408.	2.8	41
41	Crystal Structure of Dielectric Ceramics in the La(Mg0.5Ti0.5)O3–BaTiO3 System. Journal of Materials Research, 2002, 17, 1112-1117.	1.2	40
42	Influence of red mud addition on rheological behavior and hardened properties of mortars. Construction and Building Materials, 2014, 65, 84-91.	3.2	40
43	Development of grouts for consolidation of old renders. Construction and Building Materials, 2014, 50, 352-360.	3.2	39
44	Structure evolution in La(Mg0.5Ti0.5)O3–SrTiO3 system. Materials Research Bulletin, 2002, 37, 1459-1468.	2.7	38
45	Structure Sequence in the CaTiO3-LaAlO3 Microwave Ceramics-Revised. Journal of the American Ceramic Society, 2006, 89, 1721-1723.	1.9	37
46	Stainless steel coatings sputter-deposited on tungsten carbide powder particles. Surface and Coatings Technology, 2003, 176, 103-108.	2.2	35
47	Manufacture and measurement of combinatorial libraries of dielectric ceramics. Journal of the European Ceramic Society, 2007, 27, 4437-4443.	2.8	35
48	Rheological behaviour of hydraulic lime-based mortars. Journal of the European Ceramic Society, 2007, 27, 1735-1741.	2.8	35
49	Mortar composition defined according to rheometer and flow table tests using factorial designed experiments. Construction and Building Materials, 2009, 23, 3107-3111.	3.2	35
50	Pulp and paper plant wastes valorisation in bituminous mixes. Waste Management, 2010, 30, 685-696.	3.7	35
51	Treatment and use of bottom bed waste in biomass fluidized bed combustors. Fuel Processing Technology, 2014, 125, 170-181.	3.7	35
52	Synthesis of La(Mg0.5Ti0.5)O3 ceramics for microwave applications. Materials Research Bulletin, 2002, 37, 255-262.	2.7	32
53	Influence of added nanosilica and/or silica fume on fresh and hardened properties of mortars and cement pastes. Advances in Applied Ceramics, 2009, 108, 418-428.	0.6	31
54	Influence of the Type of Phase Change Materials Microcapsules on the Properties of Limeâ€ <scp>G</scp> ypsum Thermal Mortars. Advanced Engineering Materials, 2014, 16, 433-441.	1.6	31

#	Article	IF	CITATIONS
55	Structure and dielectric characterization of the La(Mg1/2Ti1/2)O3–Nd(Mg1/2Ti1/2)O3system. Journal of Physics Condensed Matter, 2003, 15, 4229-4238.	0.7	30
56	Electrical Properties of Na0.5Bi0.5TiO3 – SrTiO3 Ceramics. Integrated Ferroelectrics, 2004, 61, 159-162.	0.3	30
57	Effect of maturation time on the fresh and hardened properties of an air lime mortar. Cement and Concrete Research, 2010, 40, 447-451.	4.6	29
58	Towards increased BIM usage for existing building interventions. Structural Survey, 2016, 34, 168-190.	1.0	29
59	Influence of Adding Encapsulated Phase Change Materials in Aerial Lime Based Mortars. Advanced Materials Research, 0, 687, 255-261.	0.3	28
60	Ferroelectric-to-relaxor transition behaviour of BaTiO3ceramics doped with La(Mg1/2Ti1/2)O3. Journal of Physics Condensed Matter, 2004, 16, 2785-2794.	0.7	26
61	Characterization of Renders, Joint Mortars, and Adobes from Traditional Constructions in Aveiro (Portugal). International Journal of Architectural Heritage, 2010, 4, 102-114.	1.7	26
62	Construction materials as a waste management solution for cellulose sludge. Waste Management, 2011, 31, 370-377.	3.7	26
63	Structure–Property Relations in <i>x</i> BaTiO ₃ –(1â^' <i>x</i>)La(Mg _{1/2} Ti _{1/2})O ₃ Solid Solutions. Journal of the American Ceramic Society, 2004, 87, 584-590.	1.9	25
64	Ni and Zn doped MgTiO3 thin films: Structure, microstructure, and dielectric characteristics. Journal of Applied Physics, 2010, 107, .	1.1	25
65	Evaluation of mixing and application process parameters of single-coat mortars. Cement and Concrete Research, 2005, 35, 836-841.	4.6	24
66	Influence of the kneading water content in the behaviour of single-coat mortars. Cement and Concrete Research, 2005, 35, 1900-1908.	4.6	24
67	Solâ~'Gel Synthesis of Low-Loss MgTiO ₃ Thin Films by a Non-Methoxyethanol Route. Chemistry of Materials, 2008, 20, 4260-4267.	3.2	24
68	Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars. Energy and Buildings, 2016, 127, 980-990.	3.1	24
69	Structure-dependent microwave dielectric properties of (1â^'x)La(Mg1â^•2Ti1â^•2)O3–xLa2â^•3TiO3 ceramics. Journal of Applied Physics, 2005, 98, 034101.	1.1	23
70	Study of rehabilitation mortars: Construction of a knowledge correlation matrix. Cement and Concrete Research, 2006, 36, 1894-1902.	4.6	23
71	Evolution from Ferroelectric to Relaxor Behavior in the (1 â^'x)BaTiO3â^'xLa(Mg1/2Ti1/2)O3System. Ferroelectrics, 2005, 318, 185-192.	0.3	21
72	The influence of TiO2 nanoparticles and poliacrilonitrile fibers on the rheological behavior and hardened properties of mortars. Construction and Building Materials, 2015, 75, 315-330.	3.2	21

#	Article	IF	CITATIONS
73	Study of a thermally enhanced mortar incorporating phase change materials for overheating reduction in buildings. Journal of Energy Storage, 2022, 46, 103876.	3.9	21
74	Structure property relations in La(Mg1â^•2Ti1â^•2)O3-based solid solutions. Journal of Applied Physics, 2005, 97, 033525.	1.1	20
75	Rheological characterisation of cement pastes with nanosilica, silica fume and superplasticiser additions. Advances in Applied Ceramics, 2010, 109, 213-218.	0.6	20
76	Effect of pozzolans with different physical and chemical characteristics on concrete properties. Materiales De Construccion, 2016, 66, e083.	0.2	20
77	Effect of fine aggregate on the rheology properties of high performance cement-silica systems. Construction and Building Materials, 2010, 24, 640-649.	3.2	19
78	Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability. Journal of Material Cycles and Waste Management, 2018, 20, 1006-1015.	1.6	19
79	Microwave dielectric properties of Bi-substituted La(Mg1/2Ti1/2)O3. Journal of the European Ceramic Society, 2007, 27, 2887-2891.	2.8	18
80	Development of multifunctional plaster using nano-TiO2 and distinct particle size cellulose fibers. Energy and Buildings, 2018, 158, 721-735.	3.1	18
81	La(Mg1/2Ti1/2)O3–La2/3TiO3 microwave dielectric ceramics. Journal of the European Ceramic Society, 2003, 23, 2409-2412.	2.8	16
82	Lime mud from cellulose industry as raw material in cement mortars. Materiales De Construccion, 2014, 64, e033.	0.2	16
83	Loss spectra of pure and La-doped MgTiO ₃ microwave ceramics. Journal of Materials Research, 1995, 10, 2301-2305.	1.2	15
84	Temperature impedance spectroscopy of (1 â^' x)Na1/2Bi1/2TiO3-xLaMg1/2Ti1/2O3 solid solutions. Physics of the Solid State, 2008, 50, 490-495.	0.2	14
85	Mortars with Phase Change Materials - Part I: Physical and Mechanical Characterization. Key Engineering Materials, 2014, 634, 22-32.	0.4	14
86	Mechanical properties of cement mortars with superabsorbent polymers. , 2007, , 451-462.		14
87	Dielectric characterization of the (1 Âx)La(Mg1/2Ti1/2)O3–xBaTiO3microwave ceramics. Journal Physics D: Applied Physics, 2004, 37, 914-920.	1.3	13
88	Structure refinement, far infrared spectroscopy, and dielectric characterization of (1â^'x)La(Mg1â^•2Ti1â^•2)O3â^'xLa2â^•3TiO3 solid solutions. Journal of Applied Physics, 2006, 99, 094104.	1.1	13
89	Temperature evolution of the crystal structures in La(Mg _{1/2} Ti _{1/2})O ₃ perovskite: relation to the microwave dielectric properties. Journal of Physics Condensed Matter, 2008, 20, 085210.	0.7	13
90	Processing and Characterization of (1-x)(Na _{1/2} Bi _{1/2})TiO ₃ - xLa(Mg _{1/2} Ti _{1/2})O ₃ Ceramics. Materials Science Forum, 2006, 514-516, 250-254.	0.3	12

#	Article	IF	CITATIONS
91	Low-temperature structural and dielectric phenomena in La1/3NbO3 and La1/3TaO3: Comparative study. Applied Physics Letters, 2008, 93, 162903.	1.5	12
92	Eco-efficient mortars with incorporation of phase change materials. Journal of Building Physics, 2018, 41, 469-492.	1.2	12
93	Implementation and Challenges of the Passive House Concept in Portugal: Lessons Learnt from Successful Experience. Sustainability, 2020, 12, 8761.	1.6	12
94	Structure and dielectric properties of the (1â^'x)La(Mg1/2Ti1/2)O3–x(Na1/2Bi1/2)TiO3microwave ceramics. Journal of Physics Condensed Matter, 2006, 18, 5703-5713.	0.7	11
95	Efflorescence and its quantification in ceramic building materials. Advances in Applied Ceramics, 2001, 100, 72-76.	0.4	10
96	Correlation between mortar and concrete behavior using rheological analysis. Journal of Building Engineering, 2015, 4, 177-188.	1.6	10
97	Synthesis and characterization of dielectric compositions in the BaO-rich corner of the BaO-Y2O3-TiO2 ternary system. Journal of the European Ceramic Society, 1996, 16, 1051-1056.	2.8	9
98	Relaxor Behavior of the 0.9BaTiO3-0.1La(Mg1/2Ti1/2)O3Solid Solution. Journal of the American Ceramic Society, 2004, 87, 216-220.	1.9	9
99	Utilization of sulphidic mine tailings in alkali-activated materials. MATEC Web of Conferences, 2019, 274, 01001.	0.1	9
100	Experimental and Numerical Simulation of a Radiant Floor System: The Impact of Different Screed Mortars and Floor Finishings. Materials, 2022, 15, 1015.	1.3	9
101	Bismuth-induced dielectric relaxation in the (1â^'x)La(Mg1â^•2Ti1â^•2)O3–xBi(Mg1â^•2Ti1â^•2)O3 perovskite sys Journal of Applied Physics, 2008, 104, .	stem. I.I	8
102	Argamassas com incorporação de Materiais de Mudança de Fase (PCM): Caracterização fÃsica, mecânica e durabilidade. Revista Materia, 2015, 20, 245-261.	0.1	8
103	Dielectric properties of high-pressure synthesized relaxor PbMg1/3Nb2/3O3ceramics. Journal of Physics Condensed Matter, 2003, 15, 6879-6887.	0.7	7
104	Structure evolution in the La2MgTiO6–Ba2MgWO6 system. Materials Research Bulletin, 2006, 41, 167-176.	2.7	7
105	Impedance spectroscopy of dielectric properties of perovskite ceramics Bi(Mg1/2Ti1/2)O3. Physics of the Solid State, 2009, 51, 582-588.	0.2	7
106	Dielectric relaxation and microwave loss in the La(Mg _{1/2} Ti _{1/2})O ₃ –(Na _{1/2} Bi _{1/2})TiO _{3<!--<br-->perovskite ceramics. Journal of Materials Research, 2007, 22, 2676-2684.}	s u.b2 >	6
107	Mortars with Incorporation of Phase Change Materials for Thermal Rehabilitation. International Journal of Architectural Heritage, 2016, , 1-10.	1.7	6
108	Sustainable lightweight mortar using biochar as sand replacement. European Journal of Environmental and Civil Engineering, 2022, 26, 8263-8279.	1.0	6

#	Article	IF	CITATIONS
109	Production of Belite Based Clinker from Ornamental Stone Processing Sludge and Calcium Carbonate Sludge with Lower CO2 Emissions. Materials, 2022, 15, 2352.	1.3	6
110	The Impact of Thermal Inertia on the Indoor Thermal Environment of Light Steel Framing Constructions. Energies, 2022, 15, 3061.	1.6	6
111	Structure transformations and dielectric properties of PbY1/2Nb1/2O3 and PbHo1/2Nb1/2O3 compounds. Materials Research Bulletin, 2003, 38, 453-460.	2.7	5
112	Incorporation of Sludges in Light Expanded Clay Aggregates. Key Engineering Materials, 2004, 264-268, 1391-1394.	0.4	5
113	Real-Scale Experimental Evaluation of Energy and Thermal Regulation Effects of PCM-Based Mortars in Lightweight Constructions. Applied Sciences (Switzerland), 2022, 12, 2091.	1.3	5
114	Sustainability Evaluation Using a Life Cycle and Circular Economy Approach in Precast Concrete with Waste Incorporation. Applied Sciences (Switzerland), 2021, 11, 11617.	1.3	5
115	Synthesis and Characterisation of Microwave La(Mg,Ti)O ₃ Ceramics. Key Engineering Materials, 2002, 206-213, 1501-1504.	0.4	4
116	Evolution of global heat transfer coefficient on PCM energy storage cycles. Energy Procedia, 2017, 136, 188-195.	1.8	4
117	Energy consumption in intermittently heated residential buildings: Light Steel Framing vs hollow brick masonry constructive system. Journal of Building Engineering, 2021, 43, 103024.	1.6	4
118	Efecto de las condiciones de curado en las propiedades mecánicas de los morteros con partÃculas superabsorbentes. Materiales De Construccion, 2010, 60, 61-72.	0.2	4
119	La(Mg _{1/2} Ti _{1/2})O ₃ – Based Materials for Microwave Applications. Materials Science Forum, 2004, 455-456, 45-49.	0.3	3
120	Dielectric properties of BT–LMT mixed ceramics. Journal of the European Ceramic Society, 2007, 27, 4367-4370.	2.8	3
121	Mortars with Phase Change Materials - Part II: Durability Evaluation. Key Engineering Materials, 0, 634, 33-45.	0.4	3
122	Processing and Dielectric Properties of La(Mg 0.5 Ti 0.5)O 3 -BaTiO 3 Ceramics. Ferroelectrics, 2003, 294, 165-173.	0.3	3
123	Ultrasonic and piezoelectric properties of the BT–LMT ceramic system. Journal of the European Ceramic Society, 2007, 27, 4003-4006.	2.8	2
124	Dielectric behaviour of high-pressure (1 â^x)PbMg1/3Nb2/3O3–xPbAl1/2Nb1/2O3ceramics. Journal Physics D: Applied Physics, 2005, 38, 1253-1258.	1.3	1
125	Ageing Effect on Aerial Lime Mortars Rheology. Materials Science Forum, 2008, 587-588, 872-876.	0.3	1
126	Sustainable Mortars with Incorporation of Microencapsulated Phase Change Materials. Advanced Materials Research, 0, 1129, 621-628.	0.3	1

#	Article	IF	CITATIONS
127	RECYCLING OF ASHES FROM BIOMASS COMBUSTION AS RAW MATERIAL FOR MORTARS. Mix SustentÃ _i vel, 2021, 7, 137-146.	0.0	1
128	Anion-Deficient Perovskite Pb(Mg 0.5 Nb 0.5)O 2.75 Ceramics Obtained under High Pressure. Ferroelectrics, 2003, 296, 175-186.	0.3	1
129	INVESTIGATION OF THE RAW MATERIALS FROM THE PRECISION CASTING PROCESS FOR VIABILITY EVALUATION OF RECYCLING THE GENERATED CERAMIC SHELL WASTE. Mix SustentÃįvel, 2021, 8, 53-65.	0.0	1
130	Ferroelectric Properties of BaTiO3Doped with La(Mg1/2Ti1/2)O3. Ferroelectrics, 2004, 302, 299-302.	0.3	0
131	Structure and Dielectric Behavior of the (1â°x)La(Mg1/2Ti1/2)O3 < eqid1 > xBa(Mg1/2W1/2)O3 Microwave Ceramics. Ferroelectrics, 2006, 333, 213-219.	0.3	0
132	Reabilitação térmica: Contributo das argamassas com incorporação de material de mudança de fase. Revista Materia, 2018, 23, .	0.1	0
133	Argamassas eco-eficientes com incorporação simultânea de material de mudança de fase e cinzas volantes. Revista Materia, 2019, 24, .	0.1	0
134	Classificação de argamassas com incorporação de materiais de mudança de fase com base nas suas propriedades fÃsicas, mecânicas e térmicas. Revista Materia, 2019, 24, .	0.1	0
135	Structure Sequence in the CaTiO3?LaAlO3Microwave Ceramics?Revised. Journal of the American Ceramic Society, 2006, .	1.9	0
136	Classificação de argamassas com incorporação de materiais de mudança de fase com base nas suas propriedades fÃsicas, mecânicas e térmicas. Revista Materia, 2018, 23, .	0.1	0
137	Reabilitação térmica: Contributo das argamassas com incorporação de material de mudança de fase. Revista Materia, 2019, 24, .	0.1	0
138	Pilot test involving pulp and paper industry wastes in road pavements. , 2019, , 20-26.		0
139	INVESTIGATION OF THE RAW MATERIALS FROM THE PRECISION CASTING PROCESS FOR VIABILITY EVALUATION OF RECYCLING THE GENERATED CERAMIC SHELL WASTE. Mix SustentÃįvel, 2021, 8, 53-65.	0.0	0