Qiang Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5408426/publications.pdf

Version: 2024-02-01

		279778	302107
58	1,692	23	39
papers	citations	h-index	g-index
58	58	58	2425
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Radical and (photo)electron transfer induced mechanisms for lignin photo-Âand electro-catalytic depolymerization. Green Energy and Environment, 2023, 8, 383-405.	8.7	24
2	Studies on the Morphology Effect on Catalytic Ability of a Single MnO ₂ Catalyst Particle with a Solid Nanopipette. ACS Sensors, 2022, 7, 338-344.	7.8	5
3	Efficient Near-Infrared Light-Responsive Imprinted Polymers as Pipette Tip Microsolid Phase Extraction Sorbent for Extraction and Determination of Dibutyl Phthalate in Plastics. ACS Sustainable Chemistry and Engineering, 2022, 10, 353-362.	6.7	4
4	Sensitive Detection of 8â€Hydroxyquinoline in Cosmetics by Using a Poly(tannic acid)â€Modified Glassy Carbon Electrode. ChemistrySelect, 2022, 7, .	1.5	0
5	Dynamic rotation featured translocations of human serum albumin with a conical glass nanopore. Journal of Electroanalytical Chemistry, 2022, 917, 116397.	3.8	1
6	Oxidation of organosolv lignin in a novel surfactant-free microemulsion reactor. Bioresource Technology, 2021, 321, 124466.	9.6	9
7	Electrochemical Polymerization Induced Chirality Fixation of Crystalline Pillararene-Based Polymer and Its Application in Interfacial Chiral Sensing. Analytical Chemistry, 2021, 93, 9965-9969.	6.5	9
8	Production of 4-Ethylphenol from Lignin Depolymerization in a Novel Surfactant-Free Microemulsion Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 17897-17906.	3.7	1
9	Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots. Journal of Hazardous Materials, 2020, 381, 120969.	12.4	88
10	An Impedance Molecularly Imprinted Sensor for the Detection of Bovine Serum Albumin (BSA) Using the Dynamic Electrochemical Impedance Spectroscopy. Electroanalysis, 2020, 32, 923-930.	2.9	14
11	Selective aerobic oxidative cleavage of lignin C C bonds over novel hierarchical Ce-Cu/MFI nanosheets. Applied Catalysis B: Environmental, 2020, 279, 119343.	20.2	49
12	A Fourier Transform-Induced Data Process for Label-Free Selective Nanopore Analysis under Sinusoidal Voltage Excitations. Analytical Chemistry, 2020, 92, 11635-11643.	6.5	9
13	Production of Methyl <i>p</i> -Hydroxycinnamate by Selective Tailoring of Herbaceous Lignin Using Metal-Based Deep Eutectic Solvents (DES) as Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 17328-17337.	3.7	16
14	Preparation of Gas-Responsive Imprinting Hydrogel and Their Gas-Driven Switchable Affinity for Target Protein Recognition. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24363-24369.	8.0	26
15	Electrochemical oxidation mechanisms for selective products due to C–O and C–C cleavages of β-O-4 linkages in lignin model compounds. Physical Chemistry Chemical Physics, 2020, 22, 11508-11518.	2.8	21
16	An Electropolymerized Molecularly Imprinted Electrochemical Sensor for the Selective Determination of Bisphenol A Diglycidyl Ether. ChemistrySelect, 2020, 5, 3574-3580.	1.5	5
17	Experimental and finite element method studies for femtomolar cobalt ion detection using a DHI modified nanochannel. Analyst, The, 2019, 144, 6118-6127.	3.5	12
18	Theoretical Insights Into the Depolymerization Mechanism of Lignin to Methyl p-hydroxycinnamate by [Bmim][FeCl4] Ionic Liquid. Frontiers in Chemistry, 2019, 7, 446.	3.6	14

#	Article	IF	CITATIONS
19	Annealing Strategies for the Improvement of Low-Temperature NH ₃ -Selective Catalytic Reduction Activity of CrMnO _{<i>x</i>} Catalysts. ACS Omega, 2019, 4, 8681-8692.	3.5	8
20	Boronic acid-functionalized molybdenum disulfide quantum dots for the ultrasensitive analysis of dopamine based on synergistic quenching effects from IFE and aggregation. Journal of Materials Chemistry B, 2019, 7, 2799-2807.	5.8	26
21	Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosensors and Bioelectronics, 2019, 131, 156-162.	10.1	60
22	Rethinking Co(CO $<$ sub $>3sub>)<sub>0.5sub>(OH)Â\cdot0.11H<sub>2sub>O: a new property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous solution. Green Chemistry, 2018, 20, 2967-2972.$	9.0	55
23	Variations in Surface Morphologies, Properties, and Electrochemical Responses to Nitro-Analyte by Controlled Electropolymerization of Thiophene Derivatives. ACS Applied Materials & Derivatives, 2018, 10, 11319-11327.	8.0	70
24	Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel. Biosensors and Bioelectronics, 2018, 99, 136-141.	10.1	67
25	Polyfurfural-Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode for the Direct Determination of Nitrofurazone. Analytical Letters, 2018, 51, 728-741.	1.8	25
26	A Highly Sensitive Determination of Parathion Pesticide by Solidâ€Phase Extraction on a Silicon Carbide Nanoparticles Modified Electrode. ChemistrySelect, 2018, 3, 11510-11516.	1.5	3
27	Label-Free Simultaneous Analysis of Fe(III) and Ascorbic Acid Using Fluorescence Switching of Ultrathin Graphitic Carbon Nitride Nanosheets. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26118-26127.	8.0	95
28	An electro-responsive imprinted biosensor with switchable affinity toward proteins. Chemical Communications, 2018, 54, 9163-9166.	4.1	16
29	Selective catalytic tailoring of the H unit in herbaceous lignin for methyl <i>phydroxycinnamate production over metal-based ionic liquids. Green Chemistry, 2018, 20, 3743-3752.</i>	9.0	50
30	Hybrid Mo–C _{<i>T</i>} Nanowires as Highly Efficient Catalysts for Direct Dehydrogenation of Isobutane. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23112-23121.	8.0	14
31	MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I. Analytical Biochemistry, 2017, 520, 9-15.	2.4	41
32	High sensitivity chlorogenic acid detection based on multiple layer-by-layer self-assembly films of chitosan and multi-walled carbon nanotubes on a glassy carbon electrode. RSC Advances, 2017, 7, 6950-6956.	3.6	23
33	A highly sensitive metronidazole sensor based on a Pt nanospheres/polyfurfural film modified electrode. RSC Advances, 2017, 7, 535-542.	3.6	45
34	Sandwich and half-sandwich metal complexes derived from cross-conjugated 3-methylene-penta-1,4-diynes. Dalton Transactions, 2017, 46, 5522-5531.	3.3	13
35	Ultrasensitive Determination of Human Chorionic Gonadotropin using a Molecularly Imprinted Electrochemical Sensor. ChemistrySelect, 2017, 2, 6549-6555.	1.5	11
36	Nanosized Difunctional Photo Responsive Magnetic Imprinting Polymer for Electrochemically Monitored Light-Driven Paracetamol Extraction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44114-44123.	8.0	39

#	Article	IF	CITATIONS
37	Application of Coal in Electrochemical Sensing. Analytical Chemistry, 2017, 89, 8358-8365.	6.5	19
38	Chiral separation of <scp>dl</scp> -glutamic acid by ultrasonic field. CrystEngComm, 2017, 19, 762-766.	2.6	7
39	A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24. Talanta, 2017, 164, 121-127.	5.5	101
40	A glassy carbon electrode modified with graphene nanoplatelets, gold nanoparticles and chitosan, and coated with a molecularly imprinted polymer for highly sensitive determination of prostate specific antigen. Mikrochimica Acta, 2017, 184, 4469-4476.	5.0	35
41	Ultrasensitive electrochemical determination of Ponceau 4R with a novel ε-MnO2 microspheres/chitosan modified glassy carbon electrode. Electrochimica Acta, 2016, 206, 176-183.	5.2	40
42	Molecularly imprinted electrochemical sensor for advanced diagnosis of alpha-fetoprotein. Analytical Methods, 2016, 8, 7361-7368.	2.7	19
43	High sensitivity simultaneous determination of myricetin and rutin using a polyfurfural film modified glassy carbon electrode. RSC Advances, 2016, 6, 95435-95441.	3.6	14
44	Direct determination of oxalic acid by a bare platinum electrode contrasting a platinum nanoparticles-modified glassy carbon electrode. Journal of Experimental Nanoscience, 2016, 11, 1242-1252.	2.4	7
45	Tetrakis(ferrocenylethynyl)ethene: Synthesis, (Spectro)electrochemical and quantum chemical characterisation. Journal of Organometallic Chemistry, 2016, 821, 40-47.	1.8	11
46	A Snapshot of the Properties of Single Nanoparticles at the Moment of a Collision. Chemistry - A European Journal, 2016, 22, 9523-9527.	3.3	15
47	Structural controls of AuNR@mSiO ₂ : tuning of the SPR, and manipulation of the silica shell thickness and structure. Journal of Materials Chemistry C, 2016, 4, 2614-2620.	5.5	17
48	Effects of Electrode–Molecule Binding and Junction Geometry on the Single-Molecule Conductance of bis-2,2′:6′,2″-Terpyridine-based Complexes. Inorganic Chemistry, 2016, 55, 2691-2700.	4.0	22
49	Metallic nanocrystallites-incorporated ordered mesoporous carbon as labels for a sensitive simultaneous multianalyte electrochemical immunoassay. Biosensors and Bioelectronics, 2015, 73, 71-78.	10.1	22
50	Catalytic Depolymerization of Organosolv Lignin in a Novel Water/Oil Emulsion Reactor: Lignin as the Self-Surfactant. Industrial & Engineering Chemistry Research, 2015, 54, 11501-11510.	3.7	30
51	Role of ligands in catalytic water oxidation by mononuclear ruthenium complexes. Coordination Chemistry Reviews, 2015, 304-305, 88-101.	18.8	74
52	Electrochemical Single-Molecule Transistors with Optimized Gate Coupling. Journal of the American Chemical Society, 2015, 137, 14319-14328.	13.7	94
53	Polyfurfural film modified glassy carbon electrode for highly sensitive nifedipine determination. Electrochimica Acta, 2015, 186, 465-470.	5.2	22
54	Rull(α-diimine) or Rulll(α-diimineÂ)? Structural, Spectroscopic, and Theoretical Evidence for the Stabilization of a Prominent Metal-to-Ligand Charge-Transfer Excited-State Configuration in the Ground State. European Journal of Inorganic Chemistry, 2014, 2014, 110-119.	2.0	23

#	Article	IF	CITATION
55	Electrocatalytic Reduction of Carbon Dioxide with a Manganese(I) Tricarbonyl Complex Containing a Nonaromatic α-Diimine Ligand. Organometallics, 2014, 33, 5002-5008.	2.3	66
56	Structure and Spectroelectrochemical Response of Arene–Ruthenium and Arene–Osmium Complexes with Potentially Hemilabile Noninnocent Ligands. Organometallics, 2014, 33, 4973-4985.	2.3	44
57	Syntheses, Spectroelectrochemical Studies, and Molecular and Electronic Structures of Ferrocenyl Ene-diynes. Organometallics, 2013, 32, 6022-6032.	2.3	21
58	Electrochemical Reductive Deprotonation of an Imidazole Ligand in a Bipyridine Tricarbonyl Rhenium(I) Complex. European Journal of Inorganic Chemistry, 2012, 2012, 471-474.	2.0	21