Sheila Shahidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5407685/publications.pdf

Version: 2024-02-01

516710 580821 47 765 16 25 h-index citations g-index papers 47 47 47 801 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigation of Antibacterial Activity on Cotton Fabrics with Cold Plasma in the Presence of a Magnetic Field. Plasma Processes and Polymers, 2007, 4, S1098-S1103.	3.0	75
2	Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics. Progress in Organic Coatings, 2011, 70, 388-393.	3.9	56
3	Effect of thymol on the antibacterial efficiency of plasma-treated cotton fabric. Cellulose, 2014, 21, 1933-1943.	4.9	45
4	Novel method for ultraviolet protection and flame retardancy of cotton fabrics by low-temperature plasma. Cellulose, 2014, 21, 757-768.	4.9	37
5	Decolorization of Denim Fabrics with Cold Plasmas in the Presence of Magnetic Fields. Plasma Processes and Polymers, 2006, 3, 316-321.	3.0	36
6	Improving synthetic and natural dyeability of polyester fabrics by dielectric barrier discharge. Journal of Plastic Film and Sheeting, 2015, 31, 286-308.	2.2	33
7	Plasma Sputtering for Fabrication of Antibacterial and Ultraviolet Protective Fabric. Clothing and Textiles Research Journal, 2016, 34, 37-47.	3.4	31
8	Effect of Plasma Pretreatment Followed by Nanoclay Loading on Flame Retardant Properties of Cotton Fabric. Journal of Fusion Energy, 2014, 33, 88-95.	1.2	29
9	New Advances in Plasma Technology for Textile. Journal of Fusion Energy, 2014, 33, 97-102.	1.2	29
10	Magnetic nanoparticles application in the textile industryâ€"A review. Journal of Industrial Textiles, 2021, 50, 970-989.	2.4	27
11	Effect of Atmospheric Pressure Plasma Treatment/Followed by Chitosan Grafting on Antifelting and Dyeability of Wool Fabric. Journal of Fusion Energy, 2014, 33, 177-183.	1.2	24
12	In situ synthesis of ZnO Nanoparticles on plasma treated cotton fabric utilizing durable antibacterial activity. Journal of Natural Fibers, 2018, 15, 639-647.	3.1	24
13	Effect of plasma treatment on selfâ€cleaning of textile fabric using titanium dioxide. Micro and Nano Letters, 2015, 10, 408-413.	1.3	23
14	Flame Retardant Properties of Plasma Pretreated/Metallic Salt Loaded Cotton Fabric Before and After Direct Dyeing. Journal of Fusion Energy, 2014, 33, 119-124.	1.2	21
15	Investigation on dye ability and antibacterial activity of nanolayer platinum coated polyester fabric using DC magnetron sputtering. Progress in Organic Coatings, 2011, 70, 300-303.	3.9	20
16	Plasma sputtering as a novel method for improving fastness and antibacterial properties of dyed cotton fabrics. Journal of the Textile Institute, 2015, 106, 162-172.	1.9	18
17	Preparation of antibacterial textile using laser ablation method. Optics and Laser Technology, 2018, 99, 145-153.	4.6	18
18	<i>In-situ</i> synthesis of CuO nanoparticles on cotton fabrics using spark discharge method to fabricate antibacterial textile. Journal of Natural Fibers, 2018, 15, 870-881.	3.1	16

#	Article	IF	Citations
19	Surface Modification of Poly Vinyl Chloride (PVC) Using Low Pressure Argon and Oxygen Plasma. Plasma Science and Technology, 2010, 12, 204-207.	1.5	15
20	Effect Of Dyeing On Wrinkle Properties Of Cotton Cross-Linked By Butane Tetracarboxylic Acid (BTCA) In Presence Of Titanium Dioxide (TiO ₂) Nanoparticles. Autex Research Journal, 2015, 15, 104-111.	1.1	14
21	Improving the dyeability of polypropylene fabrics using laser technology. Journal of the Textile Institute, 2013, 104, 1113-1117.	1.9	13
22	Fabrication of ZnO nano particles using sonochemical method and applying on cotton fabric using in situ and pad-dry-cure methods. Fibers and Polymers, 2014, 15, 2472-2479.	2.1	13
23	Structural and optical properties of Ni-embedded hydrogenated diamond-like carbon (Ni-DLC) prepared by co-deposition of RF-Sputtering and RF-PECVD method. Materials Science in Semiconductor Processing, 2018, 74, 7-12.	4.0	13
24	Using low temperature plasma for surface modification of polyester fabric: dyeing and printing improvement. Journal of the Textile Institute, 2019, 110, 647-651.	1.9	13
25	Preparation of multifunctional wool fabric using chitosan after plasma treatment. Journal of the Textile Institute, 2015, 106, 1127-1134.	1.9	12
26	In situ deposition of NiO nano particles on cotton fabric using sol–gel method-photocatalytic activation properties. Journal of Materials Research and Technology, 2021, 12, 1-14.	5.8	11
27	Comparison between Mordant Treatment and Plasma Sputtering on Natural Dying and UV Protection Properties of Wool Fabric. Fibers and Polymers, 2019, 20, 1658-1665.	2.1	10
28	In situ synthesis and exhaustion of nano TiO ₂ on fabric samples using laser ablation method. Journal of the Textile Institute, 2020, 111, 122-128.	1.9	9
29	Deposition of Nano Tungsten Oxide on Glass Mat Using Hot Filament Chemical Vapor Deposition for High Catalytic Activity. High Temperature Materials and Processes, 2016, 35, 515-521.	1.4	8
30	Influence of plasma treatment on CNT absorption of cotton fabric and its electrical conductivity and antibacterial activity. Journal of Experimental Nanoscience, 2016, 11, 215-225.	2.4	8
31	Effect of Nitrogen Plasma Treatment and Direct Dye on Zeta Potential of Cotton Fabric. Oriental Journal of Chemistry, 2018, 34, 301-313.	0.3	8
32	Investigation of the Effect of Various Natural Dyes on UV Protection Properties and Antibacterial Activity of Cotton Fabrics. Journal of Natural Fibers, 2022, 19, 7213-7228.	3.1	8
33	The Influence of Dyeing on the Adsorption of Silver and Copper Particles as Antibacterial Agents on to Cotton Fabrics. Journal of Natural Fibers, 2019, 16, 677-687.	3.1	7
34	Synthesis of Silver Nanoparticles and Exhaustion on Cotton Fabric Simultaneously Using Laser Ablation Method. Journal of Natural Fibers, 2020, 17, 1295-1306.	3.1	7
35	Antibacterial Efficiency of Mordant-Treated Cotton and Polyamide Fabrics, Before and After Dyeing. Journal of Natural Fibers, 2016, 13, 507-519.	3.1	6
36	Improvement the Conductivity and Flame Retardant Properties of Carboxylated Single-Walled Carbon Nanotube/Cotton Fabrics Using Citric Acid and Sodium Hypophosphite. Journal of Natural Fibers, 2018, 15, 353-362.	3.1	6

3

#	Article	IF	CITATIONS
37	In situ synthesize of ZnO nanoparticles on cotton fabric by laser ablation method; antibacterial activities. Journal of the Textile Institute, 0 , , 1 - 11 .	1.9	6
38	Ultraviolet Protection Properties of Metal Salts Treated Cotton Fabrics. Journal of Natural Fibers, 2017, 14, 166-174.	3.1	3
39	Studying the magnetic, antibacterial, and catalytic activity properties of DBD/iron oxide nanoparticle-treated cotton fabric. Journal of Natural Fibers, 2018, 15, 731-739.	3.1	3
40	Effect of Electron Irradiation on Polypropylene Films. Plasma Science and Technology, 2011, 13, 194-196.	1.5	2
41	In situ synthesis of carbon nanotubes on glass mat using thermal chemical vapor deposition method. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 551-556.	2.1	2
42	Multilayer assembly for protection against laser light. Journal of the Textile Institute, 2020, 111, 226-234.	1.9	2
43	<i>In situ</i> deposition of magnetic nanoparticles on glass mat using plasma sputtering method. Journal of the Textile Institute, 2022, 113, 349-359.	1.9	2
44	The Effect of Various Catalyst on In-situ Synthesis of Carbon Nanotubes on the Glass Mat Using Thermal Chemical Vapor Deposition Method. Fibers and Polymers, 2018, 19, 711-721.	2.1	1
45	In situ deposition of nickel nano particles on polyester fabric and its application as a flexible electrode in supercapacitor. Journal of Industrial Textiles, 2022, 51, 4913S-4930S.	2.4	1
46	Effect of Plasma Pretreatment on Metal Absorption of Cotton Fabrics. Applied Mechanics and Materials, 0, 848, 145-148.	0.2	0
47	Effect of molybdenum/nickel sputtering on the physical and electrical conductivity of polyethylene terephthalate film and glass fibre mat. Contributions To Plasma Physics, 2018, 58, 925-932.	1.1	0