Shanxin Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5407625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>Solvothermal</scp> synthesis of triphenylamineâ€based covalent organic framework nanofibers with excellent cycle stability for supercapacitor electrodes. Journal of Applied Polymer Science, 2022, 139, 51510.	2.6	30
2	Solvothermal synthesis and enhanced electrochromic properties of covalent organic framework/functionalized carbon nanotubes composites electrochromic materials with anthraquinonoid active unit. Solar Energy Materials and Solar Cells, 2022, 235, 111489.	6.2	10
3	Towards modulating the colour hues of isoindigo-based electrochromic polymers through variation of thiophene-based donor groups. Polymer Chemistry, 2022, 13, 967-981.	3.9	27
4	A highly active and durable PtCoFe/nitrogen-incorporated carbon skeleton catalyst evolved from HA-CoFe-ZIF template for methanol electrooxidation. Ionics, 2022, 28, 3379-3388.	2.4	2
5	Preparation of hierarchical porous activated carbons for high performance supercapacitors from coal gasification fine slag. Journal of Materials Science: Materials in Electronics, 2022, 33, 14722-14734.	2.2	11
6	Hydrothermal synthesis of high specific capacitance electrode material using porous bagasse biomass carbon hosting MnO2 nanospheres. Biomass Conversion and Biorefinery, 2021, 11, 1325-1334.	4.6	12
7	Colorful superhydrophobic materials with durability and chemical stability based on kaolin. Surface and Interface Analysis, 2021, 53, 365-373.	1.8	5
8	Electrochemical Synthesis of Covalently Bonded Poly (3, 4-dioxyethylthiophene)–Carbon Nanotubes Composite with Enhanced Electrochromic Properties. Journal of Electronic Materials, 2021, 50, 2389-2399.	2.2	4
9	Preparation and Evaluation of the Supercapacitive Performance of MnO2/3D-reduced Graphene Oxide Aerogel Composite Electrode Through In Situ Electrochemical Deposition. Journal of Electronic Materials, 2021, 50, 4557-4566.	2.2	0
10	Electrochemical fabrication of polyaniline/graphene paper (PANI/GP) supercapacitor electrode materials on free-standing flexible graphene paper. High Performance Polymers, 2021, 33, 1124-1131.	1.8	8
11	Prussian Blue and Carbon-Dot Hybrids for Enhanced Electrochromic Performance. Materials, 2021, 14, 3166.	2.9	5
12	An Enhancedâ€Activity and Highâ€Stability PtCo/Nâ€Doped Carbon Skeleton Electrocatalyst Derived from UAâ€ZIFâ€67 Template for Methanol Oxidation. ChemistrySelect, 2021, 6, 6973-6985.	1.5	2
13	Fabrication of Flexible Graphene Paper/MnO ₂ Composite Supercapacitor Electrode through Electrodeposition of MnO ₂ Nanoparticles on Graphene Paper. ChemistrySelect, 2021, 6, 6803-6810.	1.5	5
14	Design and Synthesis of N-Doped Carbon Skeleton Assembled by Carbon Nanotubes and Graphene as a High-Performance Electrode Material for Supercapacitors. ACS Applied Energy Materials, 2021, 4, 7731-7742.	5.1	22
15	Synthesis of Nâ€Doped Porous Carbon/Carbon Microâ€Nanotubes/Ni x Co y O z Nanosheets as a Highâ€Capacity Electrode Material for Supercapacitors. ChemistrySelect, 2021, 6, 8379-8390.	1.5	1
16	Hydrothermal Synthesis of NiCo-layered Double Hydroxide Nanosheets Decorated on Biomass Carbon Skeleton for High Performance Supercapacitor. Chemical Research in Chinese Universities, 2021, 37, 772-777.	2.6	28
17	Hydrothermal synthesis of PANI nanowires for high-performance supercapacitor. High Performance Polymers, 2020, 32, 258-267.	1.8	25
18	Electrochromic properties of Prussian Blue nanocube film directly grown on FTO substrates by hydrothermal method. Materials Letters, 2020, 258, 126782.	2.6	28

SHANXIN XIONG

#	Article	IF	CITATIONS
19	Comparative study on the supercapacitive properties of PANI nanofibers, nanotubes, and nanospheres. High Performance Polymers, 2020, 32, 600-608.	1.8	6
20	Electrochemical Preparation of Covalently Bonded PEDOT ―Graphene Oxide Composite Electrochromic Materials Using Thiopheneâ€2â€methylanine as Bridging Group. ChemistrySelect, 2020, 5, 12206-12212.	1.5	5
21	Ultralow Ash Semicoal Powder Obtained by Two-Step Acid Treatment and Its Supercapacitive Properties. Energy & Fuels, 2020, 34, 7591-7599.	5.1	8
22	Hydrothermal synthesis of Ni-based metal organic frameworks/graphene oxide composites as supercapacitor electrode materials. Journal of Materials Research, 2020, 35, 1439-1450.	2.6	33
23	Effects of low-temperature annealing on capacitance performances of NiCo-based bimetal-organic framework materials synthesized in various solvents. Materials Letters, 2020, 268, 127608.	2.6	2
24	A novel PANI@Carbon dot hybrid with enhanced electrochemical and electrochromic properties. Materials Letters, 2020, 275, 128081.	2.6	11
25	Covalently bonded polyaniline-reduced graphene oxide/single-walled carbon nanotubes nanocomposites: influence of various dimensional carbon nanostructures on the electrochromic behavior of PANI. Polymer Journal, 2020, 52, 783-792.	2.7	16
26	Hydrothermal Synthesis of Humateâ€Layerâ€Based Bimetal Organic Framework Composites as High Rateâ€Capability and Eneryâ€Density Electrode Materials for Supercapacitors. ChemistrySelect, 2020, 5, 2794-2804.	1.5	13
27	Waterâ€dispersible polyanilineâ€carbon nanotubes composites with interface covalent bond and their enhanced electrochemical and electrochromic properties. Polymer Engineering and Science, 2020, 60, 2204-2213.	3.1	9
28	Postcomposition Preparation and Supercapacitive Properties of Polyaniline Nanotube/Graphene Oxide Composites with Interfacial Electrostatic Interaction. Journal of Electronic Materials, 2020, 49, 4076-4084.	2.2	10
29	Hydrangeaâ€like NiCoâ€based Bimetalâ€organic Frameworks, and their Pros and Cons as Supercapacitor Electrode Materials in Aqueous Electrolytes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1022-1030.	1.2	20
30	Covalent Bonding of PANI and p â€Phenylenediamineâ€Functionalized GO Using N,N′ â€Dicyclohexylcarbodiimide as Dehydrating Agent for Electrochromic Applications. ChemistrySelect, 2019, 4, 543-550.	1.5	5
31	Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application. Journal of Electronic Materials, 2019, 48, 6666-6674.	2.2	4
32	Assembly of Copper Phthalocyanine on TiO2 Nanorod Arrays as Co-catalyst for Enhanced Photoelectrochemical Water Splitting. Frontiers in Chemistry, 2019, 7, 334.	3.6	14
33	One-pot hydrothermal synthesis of polyaniline nanofibers/reduced graphene oxide nanocomposites and their supercapacitive properties. High Performance Polymers, 2019, 31, 1238-1247.	1.8	12
34	Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. Journal of Polymer Research, 2019, 26, 1.	2.4	24
35	Enhancing the Electrochromic Properties of Polyaniline through Incorporating Terpyridine Units and Coordination Bonding with Transition Metal Ions. ChemistrySelect, 2019, 4, 14343-14350.	1.5	7
36	Hydrothermal synthesis of NiCo-based bimetal-organic frameworks as electrode materials for supercapacitors. Journal of Solid State Chemistry, 2019, 270, 370-378.	2.9	74

SHANXIN XIONG

#	Article	IF	CITATIONS
37	Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source. Applied Surface Science, 2018, 442, 565-574.	6.1	31
38	Electrochromic Behaviors of Water-Soluble Polyaniline with Covalently Bonded Acetyl Ferrocene. Journal of Electronic Materials, 2018, 47, 3974-3982.	2.2	12
39	Synthesis and Performance of Highly Stable Star-Shaped Polyaniline Electrochromic Materials with Triphenylamine Core. Journal of Electronic Materials, 2018, 47, 1167-1175.	2.2	27
40	Enhancing the electrochromic properties of polyaniline via coordinate bond tethering the polyaniline with gold colloids. Solar Energy Materials and Solar Cells, 2018, 177, 134-141.	6.2	39
41	Facile synthesis and capacitance properties of N-doped porous carbon/iron oxide composites through the single-step pyrolysis of coal-based polyaniline. Journal of Porous Materials, 2018, 25, 845-853.	2.6	4
42	Enhancing the electrochromic performances of polyaniline film through incorporating polyaniline nanofibers synthesized by interfacial polymerization approach. Polymer Bulletin, 2018, 75, 3427-3443.	3.3	20
43	Hydrothermal Synthesis of Porous Sugarcane Bagasse Carbon/MnO2 Nanocomposite for Supercapacitor Application. Journal of Electronic Materials, 2018, 47, 6575-6582.	2.2	29
44	Facile fabrication of WO ₃ crystalline nanoplate on FTO glass and their application in electrochromism. Micro and Nano Letters, 2016, 11, 749-752.	1.3	13
45	Facile synthesis method of poly(3,5â€dimethyoxyaniline) hollow microsphere through interfacial polymerisation approach using camphorsulfonic acid as the doping agent. Micro and Nano Letters, 2015, 10, 645-648.	1.3	0
46	Tailoring carbon nanotubes surface with maleic anhydride for highly dispersed PtRu nanoparticles and their electrocatalytic oxidation of methanol. RSC Advances, 2015, 5, 16986-16992.	3.6	10
47	Modulating the Electrochromic Performances of Transmissive and Reflective Devices Using N,N-Dimethyl Formamide Modified Poly(3,4-Ethylenedioxythiophene)/Poly(Styrene Sulfonate) Blend as Active Layers. Journal of Macromolecular Science - Physics, 2015, 54, 799-810.	1.0	7
48	Interfacial polymerization of poly(2,5â€dimethoxyaniline) and its enhanced capacitive performances. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
49	Preparation of High-performance Covalently Bonded Polyaniline Nanorods/Graphene Supercapacitor Electrode Materials using Interfacial Copolymerization Approach. Electrochimica Acta, 2014, 127, 139-145.	5.2	55
50	Covalently Bonded Polyaniline and para-phenylenediamine Functionalized Graphene Oxide: How the Conductive Two-dimensional Nanostructure Influences the Electrochromic Behaviors of Polyaniline. Electrochimica Acta, 2014, 138, 101-108.	5.2	38
51	Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochimica Acta, 2012, 85, 235-242.	5.2	79
52	Covalent bonding of polyaniline on fullerene: Enhanced electrical, ionic conductivities and electrochromic performances. Electrochimica Acta, 2012, 67, 194-200.	5.2	48
53	Polyaniline nanoparticles doped with star-like poly(styrene sulfonate): Synthesis and electrochromic properties. Solar Energy Materials and Solar Cells, 2012, 99, 141-147.	6.2	26
54	Water-Processable Polyaniline with Covalently Bonded Single-Walled Carbon Nanotubes: Enhanced Electrochromic Properties and Impedance Analysis. ACS Applied Materials & Interfaces, 2011, 3, 782-788.	8.0	94

SHANXIN XIONG

#	Article	IF	CITATIONS
55	Covalently Bonded Polyanilineâ^'TiO ₂ Hybrids: A Facile Approach to Highly Stable Anodic Electrochromic Materials with Low Oxidation Potentials. Chemistry of Materials, 2010, 22, 255-260.	6.7	118
56	A complementary electrochromic device based on polyaniline-tethered polyhedral oligomeric silsesquioxane and tungsten oxide. Solar Energy Materials and Solar Cells, 2009, 93, 625-629.	6.2	38
57	A complementary electrochromic device based on polyaniline tethered polyhedral oligomeric silsesquioxane and poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonic acid). Solar Energy Materials and Solar Cells, 2009, 93, 2113-2117.	6.2	32
58	Star-like polyaniline prepared from octa(aminophenyl) silsesquioxane: Enhanced electrochromic contrast and electrochemical stability. Electrochimica Acta, 2008, 53, 3523-3530.	5.2	59
59	Enhancement of Electrochromic Contrast by Tethering Conjugated Polymer Chains onto Polyhedral Oligomeric Silsesquioxane Nanocages. Macromolecular Rapid Communications, 2007, 28, 281-285.	3.9	52
60	High specific surface area triphenylamine-based covalent organic framework/polyaniline nanocomposites for supercapacitor application. High Performance Polymers, 0, , 095400832211012.	1.8	0