
Cong-Fei Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5406736/publications.pdf Version: 2024-02-01

CONC-FELXU

#	Article	IF	CITATIONS
1	Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4164-4169.	3.3	617
2	Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery. Journal of the American Chemical Society, 2015, 137, 15217-15224.	6.6	312
3	CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nature Communications, 2017, 8, 202.	5.8	246
4	Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. Journal of Controlled Release, 2016, 231, 17-28.	4.8	171
5	Delivery systems for siRNA drug development in cancer therapy. Asian Journal of Pharmaceutical Sciences, 2015, 10, 1-12.	4.3	170
6	Macrophage-Specific <i>in Vivo</i> Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles. ACS Nano, 2018, 12, 994-1005.	7.3	163
7	Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials, 2015, 37, 405-414.	5.7	146
8	Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nature Communications, 2018, 9, 4092.	5.8	142
9	Facile Generation of Tumorâ€pH‣abile Linkageâ€Bridged Block Copolymers for Chemotherapeutic Delivery. Angewandte Chemie - International Edition, 2016, 55, 1010-1014.	7.2	133
10	Rational designs of in vivo CRISPR-Cas delivery systems. Advanced Drug Delivery Reviews, 2021, 168, 3-29.	6.6	125
11	Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1β in mice. Journal of Hepatology, 2015, 62, 1311-1318.	1.8	116
12	Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Advanced Drug Delivery Reviews, 2017, 115, 98-114.	6.6	107
13	Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials, 2016, 88, 48-59.	5.7	98
14	Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 2016, 103, 44-55.	5.7	90
15	A General Strategy for Macrotheranostic Prodrug Activation: Synergy between the Acidic Tumor Microenvironment and Bioorthogonal Chemistry. Angewandte Chemie - International Edition, 2020, 59, 7168-7172.	7.2	89
16	Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomaterials Science, 2018, 6, 1592-1603.	2.6	72
17	The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials, 2018, 182, 104-113.	5.7	70
18	Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nature Communications, 2016, 7, 13787.	5.8	67

Cong-Fei Xu

#	Article	IF	CITATIONS
19	Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy. Nature Communications, 2021, 12, 1359.	5.8	64
20	In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials, 2019, 217, 119302.	5.7	60
21	Enhanced Primary Tumor Penetration Facilitates Nanoparticle Draining into Lymph Nodes after Systemic Injection for Tumor Metastasis Inhibition. ACS Nano, 2019, 13, 8648-8658.	7.3	55
22	Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials, 2015, 51, 1-11.	5.7	54
23	Facile Hydrophobization of siRNA with Anticancer Drug for Non-Cationic Nanocarrier-Mediated Systemic Delivery. Nano Letters, 2019, 19, 2688-2693.	4.5	51
24	Optimization of lipid-assisted nanoparticle for disturbing neutrophils-related inflammation. Biomaterials, 2018, 172, 92-104.	5.7	50
25	Development of "CLAN―Nanomedicine for Nucleic Acid Therapeutics. Small, 2019, 15, e1900055.	5.2	37
26	Facile Generation of Tumorâ€pH‣abile Linkageâ€Bridged Block Copolymers for Chemotherapeutic Delivery. Angewandte Chemie, 2016, 128, 1022-1026.	1.6	35
27	CD205-TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells. Cellular and Molecular Immunology, 2017, 14, 675-684.	4.8	32
28	Nanoparticle-delivered siRNA targeting Bruton's tyrosine kinase for rheumatoid arthritis therapy. Biomaterials Science, 2019, 7, 4698-4707.	2.6	30
29	Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention. Nano Research, 2018, 11, 6270-6282.	5.8	29
30	Delivery of mRNA for regulating functions of immune cells. Journal of Controlled Release, 2022, 345, 494-511.	4.8	28
31	An All-in-One Nanomedicine Consisting of CRISPR-Cas9 and an Autoantigen Peptide for Restoring Specific Immune Tolerance. ACS Applied Materials & Interfaces, 2020, 12, 48259-48271.	4.0	24
32	Biomaterialsâ€Based Delivery of Therapeutic Antibodies for Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2002139.	3.9	21
33	Co-delivery of Phagocytosis Checkpoint Silencer and Stimulator of Interferon Genes Agonist for Synergetic Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2021, 13, 29424-29438.	4.0	19
34	Dually regulating the proliferation and the immune microenvironment of melanoma <i>via</i> nanoparticle-delivered siRNA targeting onco-immunologic CD155. Biomaterials Science, 2020, 8, 6683-6694.	2.6	12
35	An Intracellular pH-Actuated Polymer for Robust Cytosolic Protein Delivery. CCS Chemistry, 0, , 431-442.	4.6	10
36	Polyphosphoester-Based Nanocarrier for Combined Radio-Photothermal Therapy of Breast Cancer. ACS Biomaterials Science and Engineering, 2019, 5, 1868-1877.	2.6	9

Cong-Fei Xu

#	Article	IF	CITATIONS
37	Dual-functional super bispecific nano-antibodies derived from monoclonal antibodies potentiate the antitumor effect of innate immune cells. Nano Today, 2021, 39, 101209.	6.2	8
38	Targeting glucose uptake of glioma cells by siRNA delivery with polymer nanoparticle. Journal of Controlled Release, 2015, 213, e23-e24.	4.8	7