H Lee Sweeney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5406416/publications.pdf Version: 2024-02-01

HIFF SWEENEY

#	Article	IF	CITATIONS
1	Kenneth C. Holmes (1934–2021). Structure, 2022, 30, 201-202.	1.6	0
2	The 2022 On-site Padua Days on Muscle and Mobility Medicine hosts the University of Florida Institute of Myology and the Wellstone Center, March 30 - April 3, 2022 at the University of Padua and Thermae of Euganean Hills, Padua, Italy: The collection of abstracts. European Journal of Translational Myology, 2022, 32, .	0.8	12
3	Evaluation of the DBA/2J mouse as a potential background strain for genetic models of cardiomyopathy. , 2022, 1, 100012.		2
4	Filopodia powered by class x myosin promote fusion of mammalian myoblasts. ELife, 2021, 10, .	2.8	9
5	A Randomized, Double-Blind, Placebo-Controlled, Global Phase 3 Study of Edasalonexent in Pediatric Patients with Duchenne Muscular Dystrophy: Results of the PolarisDMD Trial. Journal of Neuromuscular Diseases, 2021, 8, 769-784.	1.1	13
6	High-resolution structures of the actomyosin-V complex in three nucleotide states provide insights into the force generation mechanism. ELife, 2021, 10, .	2.8	27
7	Force Generation by Myosin Motors: A Structural Perspective. Chemical Reviews, 2020, 120, 5-35.	23.0	91
8	Activin type II receptor ligand signaling inhibition after experimental ischemic heart failure attenuates cardiac remodeling and prevents fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H378-H390.	1.5	21
9	The D2.mdx mouse as a preclinical model of the skeletal muscle pathology associated with Duchenne muscular dystrophy. Scientific Reports, 2020, 10, 14070.	1.6	57
10	Simultaneous tracking of two motor domains reveals near simultaneous steps and stutter steps of myosin 10 on actin filament bundles. Biochemical and Biophysical Research Communications, 2020, 525, 94-99.	1.0	4
11	MR biomarkers predict clinical function in Duchenne muscular dystrophy. Neurology, 2020, 94, e897-e909.	1.5	55
12	Upper and Lower Extremities in Duchenne Muscular Dystrophy Evaluated with Quantitative MRI and Proton MR Spectroscopy in a Multicenter Cohort. Radiology, 2020, 295, 616-625.	3.6	28
13	Myosin Structures. Advances in Experimental Medicine and Biology, 2020, 1239, 7-19.	0.8	26
14	Glucocorticoids counteract hypertrophic effects of myostatin inhibition in dystrophic muscle. JCI Insight, 2020, 5, .	2.3	19
15	Functional muscle hypertrophy by increased insulinâ€like growth factor 1 does not require dysferlin. Muscle and Nerve, 2019, 60, 464-473.	1.0	4
16	Muscle Contraction. Cold Spring Harbor Perspectives in Biology, 2018, 10, a023200.	2.3	119
17	Leg muscle MRI in identical twin boys with duchenne muscular dystrophy. Muscle and Nerve, 2018, 58, E1.	1.0	2
18	Motor Proteins. Cold Spring Harbor Perspectives in Biology, 2018, 10, a021931.	2.3	122

#	Article	IF	CITATIONS
19	The Nuclear Receptor PPARÎ ³ Controls Progressive Macrophage Polarization as a Ligand-Insensitive Epigenomic Ratchet of Transcriptional Memory. Immunity, 2018, 49, 615-626.e6.	6.6	128
20	An intermediate along the recovery stroke of myosin VI revealed by X-ray crystallography and molecular dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6213-6218.	3.3	22
21	Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line. Experimental Cell Research, 2018, 370, 168-173.	1.2	25
22	Longitudinal timed function tests in Duchenne muscular dystrophy: ImagingDMD cohort natural history. Muscle and Nerve, 2018, 58, 631-638.	1.0	41
23	Structural and functional cardiac profile after prolonged duration of mechanical unloading: potential implications for myocardial recovery. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1463-H1476.	1.5	16
24	Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PLoS ONE, 2018, 13, e0194283.	1.1	52
25	Too much of a good thing. ELife, 2018, 7, .	2.8	3
26	Supraphysiological levels of <scp>GDF</scp> 11 induce striated muscle atrophy. EMBO Molecular Medicine, 2017, 9, 531-544.	3.3	99
27	A phase 3 randomized placebo-controlled trial of tadalafil for Duchenne muscular dystrophy. Neurology, 2017, 89, 1811-1820.	1.5	58
28	Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 26-34.	1.1	175
29	Force-producing ADP state of myosin bound to actin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1844-52.	3.3	76
30	Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. Journal of Cell Biology, 2016, 213, 275-288.	2.3	102
31	How Myosin Generates Force on Actin Filaments. Trends in Biochemical Sciences, 2016, 41, 989-997.	3.7	135
32	Increased collagen crossâ€linking is a signature of dystrophinâ€deficient muscle. Muscle and Nerve, 2016, 54, 71-78.	1.0	66
33	Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophinâ€Deficient Hearts. Journal of the American Heart Association, 2016, 5, .	1.6	32
34	The myosin X motor is optimized for movement on actin bundles. Nature Communications, 2016, 7, 12456.	5.8	75
35	Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large duchenne muscular dystrophy cohort. Annals of Neurology, 2016, 79, 535-547.	2.8	131
36	Cardiac myosin light chain is phosphorylated by Ca ²⁺ /calmodulin-dependent and -independent kinase activities. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3824-33.	3.3	41

#	Article	IF	CITATIONS
37	Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility, and vascular function in zebrafish. DMM Disease Models and Mechanisms, 2016, 9, 529-40.	1.2	10
38	Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight, 2016, 1, e90341.	2.3	44
39	Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy. PLoS ONE, 2016, 11, e0166803.	1.1	27
40	How a patient advocacy group developed the first proposed draft guidance document for industry for submission to the U.S. Food and Drug Administration. Orphanet Journal of Rare Diseases, 2015, 10, 82.	1.2	39
41	Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements. PLoS ONE, 2015, 10, e0128915.	1.1	39
42	Myosin VI deafness mutation prevents the initiation of processive runs on actin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1201-9.	3.3	22
43	Early loss of ambulation is not a representative clinical feature in Duchenne muscular dystrophy dogs: remarks on the article of Barthélémy et al DMM Disease Models and Mechanisms, 2015, 8, 193-194.	1.2	6
44	Cardiac myostatin upregulation occurs immediately after myocardial ischemia and is involved in skeletal muscle activation of atrophy. Biochemical and Biophysical Research Communications, 2015, 457, 106-111.	1.0	43
45	Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7153-7158.	3.3	235
46	How Actin Initiates the Motor Activity of Myosin. Developmental Cell, 2015, 33, 401-412.	3.1	118
47	Attenuation of the unfolded protein response and endoplasmic reticulum stress after mechanical unloading in dilated cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H459-H470.	1.5	47
48	Magnetic Resonance Imaging and Spectroscopy Assessment of Lower Extremity Skeletal Muscles in Boys with Duchenne Muscular Dystrophy: A Multicenter Cross Sectional Study. PLoS ONE, 2014, 9, e106435.	1.1	94
49	Meeting Report: New Directions in Biology and Disease of Skeletal Muscle 2014. Journal of Neuromuscular Diseases, 2014, 1, 197-206.	1.1	1
50	PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology, 2014, 82, 2085-2091.	1.5	94
51	Myosin VI Must Dimerize and Deploy Its Unusual Lever Arm in Order to Perform Its Cellular Roles. Cell Reports, 2014, 8, 1522-1532.	2.9	26
52	Assessment of intramuscular lipid and metabolites of the lower leg using magnetic resonance spectroscopy in boys with Duchenne muscular dystrophy. Neuromuscular Disorders, 2014, 24, 574-582.	0.3	36
53	Constitutive phosphorylation of myosin phosphatase targeting subunitâ€1 in smooth muscle. Journal of Physiology, 2014, 592, 3031-3051.	1.3	22
54	Phase 2a Study of Ataluren-Mediated Dystrophin Production in Patients with Nonsense Mutation Duchenne Muscular Dystrophy. PLoS ONE, 2013, 8, e81302.	1.1	201

#	Article	IF	CITATIONS
55	Long-term Restoration of Cardiac Dystrophin Expression in Golden Retriever Muscular Dystrophy Following rAAV6-mediated Exon Skipping. Molecular Therapy, 2012, 20, 580-589.	3.7	74
56	Processive Steps in the Reverse Direction Require Uncoupling of the Lead Head Lever Arm of Myosin VI. Molecular Cell, 2012, 48, 75-86.	4.5	22
57	Activin IIB receptor blockade attenuates dystrophic pathology in a mouse model of duchenne muscular dystrophy. Muscle and Nerve, 2010, 42, 722-730.	1.0	60
58	Systemic Myostatin Inhibition via Liver-Targeted Gene Transfer in Normal and Dystrophic Mice. PLoS ONE, 2010, 5, e9176.	1.1	53
59	Reply to Sun et al.: Myosin VI movement: Wiggly or straight?. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	3.3	0
60	Structural and Functional Insights into the Myosin Motor Mechanism. Annual Review of Biophysics, 2010, 39, 539-557.	4.5	352
61	Myosin VI Rewrites the Rules for Myosin Motors. Cell, 2010, 141, 573-582.	13.5	110
62	Myostatin Is Upregulated Following Stress in an Erk-Dependent Manner and Negatively Regulates Cardiomyocyte Growth in Culture and in a Mouse Model. PLoS ONE, 2010, 5, e10230.	1.1	32
63	Myosin VI Dimerization Triggers an Unfolding of a Three-Helix Bundle in Order to Extend Its Reach. Molecular Cell, 2009, 35, 305-315.	4.5	89
64	The post-rigor structure of myosin VI and implications for the recovery stroke. EMBO Journal, 2008, 27, 244-252.	3.5	31
65	Genetic Disruption of Calcineurin Improves Skeletal Muscle Pathology and Cardiac Disease in a Mouse Model of Limb-Girdle Muscular Dystrophy. Journal of Biological Chemistry, 2007, 282, 10068-10078.	1.6	33
66	The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 778-783.	3.3	76
67	The Structural Basis for the Large Powerstroke of Myosin VI. Cell, 2007, 131, 300-308.	13.5	75
68	How myosin VI coordinates its heads during processive movement. EMBO Journal, 2007, 26, 2682-2692.	3.5	66
69	A calpain inhibitor fails to rescue dystrophic skeletal muscle. FASEB Journal, 2007, 21, A940.	0.2	0
70	Full-Length Myosin VI Dimerizes and Moves Processively along Actin Filaments upon Monomer Clustering. Molecular Cell, 2006, 21, 331-336.	4.5	123
71	The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature, 2005, 435, 779-785.	13.7	206
72	Magnesium Regulates ADP Dissociation from Myosin V. Journal of Biological Chemistry, 2005, 280, 6072-6079.	1.6	69

#	Article	lF	CITATIONS
73	A Model of Myosin V Processivity. Journal of Biological Chemistry, 2004, 279, 40100-40111.	1.6	152
74	The motor mechanism of myosin V: insights for muscle contraction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1829-1842.	1.8	66
75	Myosin VI Steps via a Hand-over-Hand Mechanism with Its Lever Arm Undergoing Fluctuations when Attached to Actin. Journal of Biological Chemistry, 2004, 279, 37223-37226.	1.6	141
76	Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO Journal, 2004, 23, 4527-4537.	3.5	273
77	Gene Doping. Scientific American, 2004, 291, 62-69.	1.0	35
78	A structural state of the myosin V motor without bound nucleotide. Nature, 2003, 425, 419-423.	13.7	288
79	Kinetic Characterization of the Weak Binding States of Myosin Vâ€. Biochemistry, 2002, 41, 8508-8517.	1.2	75
80	Kinetic Mechanism and Regulation of Myosin VI. Journal of Biological Chemistry, 2001, 276, 32373-32381.	1.6	218
81	Muscle-Specific Promoters May Be Necessary for Adeno-Associated Virus-Mediated Gene Transfer in the Treatment of Muscular Dystrophies. Human Gene Therapy, 2001, 12, 205-215.	1.4	138
82	Modulation of Striated Muscle Function is Reflected by Thick Filament Structure Microscopy and Microanalysis, 2000, 6, 76-77.	0.2	0
83	Actin and Light Chain Isoform Dependence of Myosin V Kineticsâ€. Biochemistry, 2000, 39, 14196-14202.	1.2	87
84	Myosin VI is an actin-based motor that moves backwards. Nature, 1999, 401, 505-508.	13.7	643
85	Kinetic Tuning of Myosin via a Flexible Loop Adjacent to the Nucleotide Binding Pocket. Journal of Biological Chemistry, 1998, 273, 6262-6270.	1.6	228
86	A 35-Ã movement of smooth muscle myosin on ADP release. Nature, 1995, 378, 748-751.	13.7	390