Leonid A Dombrovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5405984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE USE OF TRANSPORT APPROXIMATION AND DIFFUSION-BASED MODELS IN RADIATIVE TRANSFER CALCULATIONS. Computational Thermal Sciences, 2012, 4, 297-315.	0.9	130
2	A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. International Journal of Heat and Mass Transfer, 2011, 54, 5459-5469.	4.8	119
3	Indirect heating strategy for laser induced hyperthermia: An advanced thermal model. International Journal of Heat and Mass Transfer, 2012, 55, 4688-4700.	4.8	107
4	Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 91.	1.5	94
5	Near-infrared radiative properties of porous zirconia ceramics. Infrared Physics and Technology, 2007, 51, 44-53.	2.9	86
6	Thermal radiation from nonisothermal spherical particles of a semitransparent material. International Journal of Heat and Mass Transfer, 2000, 43, 1661-1672.	4.8	83
7	Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles. Applied Optics, 2005, 44, 7021.	2.1	80
8	Heating and evaporation of semi-transparent diesel fuel droplets in the presence of thermal radiation. Fuel, 2001, 80, 1535-1544.	6.4	78
9	Self-assembled levitating clusters of water droplets: pattern-formation and stability. Scientific Reports, 2017, 7, 1888.	3.3	61
10	Plasmonic "pump–probe―method to study semi-transparent nanofluids. Applied Optics, 2013, 52, 6041.	1.8	60
11	A simplified non-isothermal model for droplet heating and evaporation. International Communications in Heat and Mass Transfer, 2003, 30, 787-796.	5.6	58
12	Spectral properties of diesel fuel droplets. Fuel, 2003, 82, 15-22.	6.4	57
13	Absorption of thermal radiation in a semi-transparent spherical droplet: a simplified model. International Journal of Heat and Fluid Flow, 2003, 24, 919-927.	2.4	57
14	Visible and near-infrared optical properties of ceria ceramics. Infrared Physics and Technology, 2013, 57, 101-109.	2.9	57
15	Absorption of thermal radiation in large semi-transparent particles at arbitrary illumination of the polydisperse system. International Journal of Heat and Mass Transfer, 2004, 47, 5511-5522.	4.8	55
16	Infrared radiative properties of polymer coatings containing hollow microspheres. International Journal of Heat and Mass Transfer, 2007, 50, 1516-1527.	4.8	54
17	Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1987-1994.	2.3	50
18	Characterization of Self-Assembled 2D Patterns with Voronoi Entropy. Entropy, 2018, 20, 956.	2.2	49

#	Article	IF	CITATIONS
19	A modified differential approximation for thermal radiation of semitransparent nonisothermal particles: application to optical diagnostics of plasma spraying. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73, 433-441.	2.3	45
20	Spectral Model of Absorption and Scattering of Thermal Radiation by Diesel Fuel Droplets. High Temperature, 2002, 40, 242-248.	1.0	44
21	A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 103, 601-610.	2.3	43
22	Near-infrared optical properties of a porous alumina ceramics produced by hydrothermal oxidation of aluminum. Infrared Physics and Technology, 2016, 77, 162-170.	2.9	42
23	On snowpack heating by solar radiation: A computational model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 227, 72-85.	2.3	42
24	THERMAL RADIATION PROPERTIES OF HIGHLY POROUS CELLULAR FOAMS. Special Topics and Reviews in Porous Media, 2013, 4, 111-136.	1.1	41
25	An Estimate of the Temperature of Semitransparent Oxide Particles in Thermal Spraying. Heat Transfer Engineering, 2003, 24, 60-68.	1.9	40
26	COMBINED TWO-FLUX APPROXIMATION AND MONTE CARLO MODEL FOR IDENTIFICATION OF RADIATIVE PROPERTIES OF HIGHLY SCATTERING DISPERSED MATERIALS. Computational Thermal Sciences, 2012, 4, 365-378.	0.9	40
27	The effect of thermal radiation on the solidification dynamics of metal oxide melt droplets. Nuclear Engineering and Design, 2008, 238, 1421-1429.	1.7	39
28	A simplified model for the shielding of fire thermal radiation by water mists. International Journal of Heat and Mass Transfer, 2016, 96, 199-209.	4.8	39
29	Large-cell model of radiation heat transfer in multiphase flows typical for fuel–coolant interaction. International Journal of Heat and Mass Transfer, 2007, 50, 3401-3410.	4.8	38
30	Attenuation of solar radiation by a water mist from the ultraviolet to the infrared range. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1182-1190.	2.3	38
31	Radiative heating of superficial human tissues with the use of water-filtered infrared-A radiation: A computational modeling. International Journal of Heat and Mass Transfer, 2015, 85, 311-320.	4.8	38
32	The use of infrared irradiation to stabilize levitating clusters of water droplets. Infrared Physics and Technology, 2016, 75, 124-132.	2.9	38
33	SIMPLIFIED APPROACHES TO RADIATIVE TRANSFER SIMULATIONS IN LASER-INDUCED HYPERTHERMIA OF SUPERFICIAL TUMORS. Computational Thermal Sciences, 2013, 5, 521-530.	0.9	38
34	An ablation model for the thermal decomposition of porous zinc oxide layer heated by concentrated solar radiation. International Journal of Heat and Mass Transfer, 2009, 52, 2444-2452.	4.8	36
35	A comparative analysis of shielding of thermal radiation of fires using mist curtains containing droplets of pure water or sea water. International Journal of Thermal Sciences, 2020, 152, 106299.	4.9	35
36	Transient temperature and thermal stress profiles in semi-transparent particles under high-flux irradiation. International Journal of Heat and Mass Transfer, 2007, 50, 2117-2123.	4.8	34

#	Article	IF	CITATIONS
37	Generation of levitating droplet clusters above the locally heated water surface: A thermal analysis of modified installation. International Journal of Heat and Mass Transfer, 2017, 104, 1268-1274.	4.8	32
38	An effect of "scattering by absorption―observed in near-infrared properties of nanoporous silica. Journal of Applied Physics, 2010, 107, .	2.5	29
39	Radiative heat transfer from supersonic flow with suspended particles to a blunt body. International Journal of Heat and Mass Transfer, 2016, 93, 853-861.	4.8	28
40	High Temperature Infrared Properties of <scp>YSZ</scp> Electrolyte Ceramics for <scp>SOFCs</scp> : Experimental Determination and Theoretical Modeling. Journal of the American Ceramic Society, 2011, 94, 4310-4316.	3.8	26
41	Effects of short-pulsed laser radiation on transient heating of superficial human tissues. International Journal of Heat and Mass Transfer, 2014, 78, 488-497.	4.8	26
42	Modeling of repeating freezing of biological tissues and analysis of possible microwave monitoring of local regions of thawing. International Journal of Heat and Mass Transfer, 2015, 89, 894-902.	4.8	26
43	Modeling Evaporation of Water Droplets as Applied to Survival of Airborne Viruses. Atmosphere, 2020, 11, 965.	2.3	26
44	Self-Propulsion of Water-Supported Liquid Marbles Filled with Sulfuric Acid. Journal of Physical Chemistry B, 2018, 122, 7936-7942.	2.6	25
45	Droplet clusters: nature-inspired biological reactors and aerosols. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190121.	3.4	25
46	Effect of external electric field on dynamics of levitating water droplets. International Journal of Thermal Sciences, 2020, 153, 106375.	4.9	25
47	THERMAL RADIATION MODELING IN NUMERICAL SIMULATION OF MELT-COOLANT INTERACTION. Computational Thermal Sciences, 2009, 1, 1-35.	0.9	25
48	On relative contribution of electrostatic and aerodynamic effects to dynamics of a levitating droplet cluster. International Journal of Heat and Mass Transfer, 2019, 133, 712-717.	4.8	24
49	A COMBINED P1 AND MONTE CARLO MODEL FOR MULTIDIMENSIONAL RADIATIVE TRANSFER PROBLEMS IN SCATTERING MEDIA. Computational Thermal Sciences, 2010, 2, 549-560.	0.9	24
50	Modeling of thermal radiation of polymer coating containing hollow microspheres. High Temperature, 2005, 43, 247-258.	1.0	22
51	Stable cluster of identical water droplets formed under the infrared irradiation: Experimental study and theoretical modeling. International Journal of Heat and Mass Transfer, 2020, 161, 120255.	4.8	22
52	Heat transfer by radiation from a hot particle to ambient water through the vapor layer. International Journal of Heat and Mass Transfer, 2000, 43, 2405-2414.	4.8	21
53	Absorption of external thermal radiation in asymmetrically illuminated droplets. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87, 119-135.	2.3	21
54	The Effect of Gold Nanorods Clustering on Near-Infrared Radiation Absorption. Applied Sciences (Switzerland), 2018, 8, 1132.	2.5	21

3.5

13

#	Article	IF	CITATIONS
55	The use of infrared self-emission measurements to retrieve surface temperature of levitating water droplets. Infrared Physics and Technology, 2015, 69, 238-243.	2.9	20
56	Approximate model for break-up of solidifying melt particles due to thermal stresses in surface crust layer. International Journal of Heat and Mass Transfer, 2009, 52, 582-587.	4.8	19
57	Expanding the temperature range for generation of droplet clusters over the locally heated water surface. International Journal of Heat and Mass Transfer, 2017, 113, 1054-1058.	4.8	19
58	Two-step method for radiative transfer calculations in a developing pool fire at the initial stage of its suppression by a water spray. International Journal of Heat and Mass Transfer, 2018, 127, 717-726.	4.8	19
59	Scattering of Radiation and Simple Approaches to Radiative Transfer in Thermal Engineering and Biomedical Applications. Springer Series in Light Scattering, 2019, , 71-127.	0.6	19
60	An effect of turbulent clustering on scattering of microwave radiation by small particles in the atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 234-242.	2.3	18
61	Continuous Symmetry Measure vs Voronoi Entropy of Droplet Clusters. Journal of Physical Chemistry C, 2021, 125, 2431-2436.	3.1	18
62	Atomization of superheated water: Results from experimental studies. Thermal Engineering (English) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf
63	On the universality of shapes of the freezing water droplets. Colloids and Interface Science Communications, 2022, 47, 100590.	4.1	16
64	Solar heating of ice sheets containing gas bubbles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 250, 106991.	2.3	15
65	Effect of asymmetric cooling of sessile droplets on orientation of the freezing tip. Journal of Colloid and Interface Science, 2022, 620, 179-186.	9.4	14
66	The Propagation of Infrared Radiation in a Semitransparent Liquid Containing Gas Bubbles. High Temperature, 2004, 42, 146-153.	1.0	13
67	An estimate of stability of large solidifying droplets in fuel–coolant interaction. International Journal of Heat and Mass Transfer, 2007, 50, 3832-3836.	4.8	13
68	Spectroscopic diagnostics of morphological changes arising in thermal processing of polypropylene. Applied Optics, 2014, 53, 2702.	1.8	13
69	Identification of radiative heat transfer parameters in multilayer thermal insulation of spacecraft. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 598-614.	2.8	13
70	Steam explosion in nuclear reactors: Droplets of molten steel vs core melt droplets. International Journal of Heat and Mass Transfer, 2017, 107, 432-438.	4.8	13
71	Self-generated clouds of micron-sized particles as a promising way of a Solar Probe shielding from intense thermal radiation of the Sun. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 200, 234-243.	2.3	13

72 Self-Arranged Levitating Droplet Clusters: A Reversible Transition from Hexagonal to Chain Structure. Langmuir, 2019, 35, 15330-15334.

5

LEONID A DOMBROVSKY

#	Article	IF	CITATIONS
73	Oscillatory Motion of a Droplet Cluster. Journal of Physical Chemistry C, 2019, 123, 23572-23576.	3.1	13
74	Clustering and self-organization in small-scale natural and artificial systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190443.	3.4	13
75	Survival of Virus Particles in Water Droplets: Hydrophobic Forces and Landauer's Principle. Entropy, 2021, 23, 181.	2.2	13
76	Directional reflectance of optically dense planetary atmosphere illuminated by solar light: An approximate solution and its verification. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 208, 78-85.	2.3	12
77	Suppression of the condensational growth of droplets of a levitating cluster using the modulation of the laser heating power. International Journal of Heat and Mass Transfer, 2018, 127, 660-664.	4.8	12
78	Light absorption by polluted snow cover: Internal versus external mixture of soot. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 242, 106799.	2.3	11
79	THERMAL RADIATION OF NONISOTHERMAL PARTICLES IN COMBINED HEAT TRANSFER PROBLEMS. , 2007, , .		11
80	Simple methods for identification of radiative properties of highly-porous ceria ceramics in the range of semi-transparency. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1108-1117.	2.8	10
81	An infrared scattering by evaporating droplets at the initial stage of a pool fire suppression by water sprays. Infrared Physics and Technology, 2018, 91, 55-62.	2.9	10
82	The influence of pollution on solar heating and melting of a snowpack. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 233, 42-51.	2.3	10
83	Infrared and microwave radiative properties of metal coated microfibres. International Journal of Thermal Sciences, 1998, 37, 925-933.	0.2	9
84	Heat Transfer by Radiation through a Vapor Gap under Conditions of Film Boiling of Liquid. High Temperature, 2003, 41, 819-824.	1.0	9
85	A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 172, 75-82.	2.3	9
86	A generalized analytical model for radiative transfer in vacuum thermal insulation of space vehicles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 197, 166-172.	2.3	9
87	Impact of Surfactants on the Formation and Properties of Droplet Clusters. Langmuir, 2020, 36, 11154-11160.	3.5	9
88	Symmetry of small clusters of levitating water droplets. Physical Chemistry Chemical Physics, 2020, 22, 12239-12244.	2.8	9
89	Laser-Induced Thermal Treatment of Superficial Human Tumors: An Advanced Heating Strategy and Non-Arrhenius Law for Living Tissues. , 2022, 1, .		9
90	A model for solid bubbles formation in melt–coolant interaction. International Journal of Heat and Mass Transfer, 2009, 52, 1085-1093.	4.8	8

#	Article	IF	CITATIONS
91	An Extension of the Large-Cell Radiation Model for the Case of Semitransparent Nonisothermal Particles. Journal of Heat Transfer, 2010, 132, .	2.1	8
92	Effect of thermal properties of a substrate on formation of self-arranged surface structures on evaporated polymer films. International Journal of Heat and Mass Transfer, 2020, 158, 120053.	4.8	8
93	SHIELDING OF FIRE RADIATION WITH THE USE OF MULTI-LAYERED WATER MIST CURTAINS: PRELIMINARY ESTIMATES. Computational Thermal Sciences, 2016, 8, 371-380.	0.9	8
94	Solar Heating of the Cryosphere: Snow and Ice Sheets. Springer Series in Light Scattering, 2021, , 53-109.	0.6	7
95	RADIATIVE HEAT TRANSFER FROM SUPERSONIC FLOW WITH SUSPENDED POLYDISPERSE PARTICLES TO A BLUNT BODY: EFFECT OF COLLISIONS BETWEEN PARTICLES. Computational Thermal Sciences, 2015, 7, 313-325.	0.9	7
96	Determination of Optical Constants of Ceria By Combined Analytical and Experimental Approaches. Jom, 2013, 65, 1694-1701.	1.9	6
97	A COMPUTATIONAL MODEL FOR THERMAL RADIATION FROM THE ZONE OF MELT-WATER INTERACTION. Computational Thermal Sciences, 2010, 2, 535-547.	0.9	6
98	Heat Transfer in a Heterogeneous Supersonic Flow. , 2002, , .		6
99	Deep Heating of a Snowpack by Solar Radiation. , 2022, 2, .		6
100	Calculation of radiative heat transfer in a plane-parallel layer of an absorbing and scattering medium. Fluid Dynamics, 1972, 7, 691-695.	0.9	5
101	The Growth and Stability of Vapor Film on the Surface of a Hot Spherical Particle. High Temperature, 2002, 40, 100-104.	1.0	5
102	Kinetics of high-temperature thermal treatment of boehmite-based alumina in vacuum to produce pure alumina. International Journal of Heat and Mass Transfer, 2017, 110, 314-318.	4.8	5
103	Optical properties of oakwood in the near-infrared range of semi-transparency. Applied Optics, 2018, 57, 6657.	1.8	5
104	Osmotic evolution of composite liquid marbles. Journal of Colloid and Interface Science, 2021, 592, 167-173.	9.4	5
105	RADIATIVE TRANSFER IN VACUUM THERMAL INSULATION OF SPACE VEHICLES. Computational Thermal Sciences, 2014, 6, 103-111.	0.9	5
106	Three scenarios of freezing of liquid marbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128125.	4.7	5
107	Calculations of heat flowrates to the VVER-440 reactor vessel during interaction of corium melt with the reactor vessel. Thermal Engineering (English Translation of Teploenergetika), 2006, 53, 302-306.	0.9	4
108	In-vessel corium catcher of a nuclear reactor. Nuclear Engineering and Design, 2007, 237, 1745-1751.	1.7	4

#	Article	IF	CITATIONS
109	A Simple Physical Approach to Model Spectral Radiative Properties of Semi-Transparent Dispersed Materials. , 2011, , .		4
110	Efficiency of particle acceleration, heating, and melting in high-enthalpy plasma jets. High Temperature, 2012, 50, 145-153.	1.0	4
111	Abnormally strong decrease in reflectance of molten copper due to possible generation of levitating sub-micron melt droplets. International Journal of Heat and Mass Transfer, 2017, 113, 53-58.	4.8	4
112	Interaction of a Low-Power Laser Radiation with Nanoparticles Formed over the Copper Melt in Rarefied Argon Atmosphere. Thermo, 2021, 1, 1-14.	1.3	4
113	COMPUTATIONAL PROBLEMS OF THERMAL RADIATION IN SOLAR ENGINEERING. High Temperature Material Processes, 2018, 22, 161-184.	0.6	4
114	SELF-ASSEMBLED STABLE CLUSTERS OF DROPLETS OVER THE LOCALLY HEATED WATER SURFACE: MILESTONES OF THE LABORATORY STUDY. , 2018, , .		4
115	Thermophoretic levitation of solid particles at atmospheric pressure. Advanced Powder Technology, 2022, 33, 103497.	4.1	4
116	Thermal conditions for the formation of self-assembled cluster of droplets over the water surface and diversity of levitating droplet clusters. Heat and Mass Transfer, 0, , .	2.1	4
117	Nonuniform absorption of thermal radiation in semitransparent spherical particles under conditions of arbitrary illumination of a disperse system. High Temperature, 2004, 42, 975-986.	1.0	3
118	Vertical oscillations of droplets in small droplet clusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127271.	4.7	3
119	LASER INDUCED HYPERTHERMIA OF SUPERFICIAL TUMORS: A TRANSIENT THERMAL MODEL FOR INDIRECT HEATING STRATEGY. Computational Thermal Sciences, 2012, 4, 457-475.	0.9	3
120	THERMAL RADIATION MODELING IN NUMERICAL SIMULATION OF MELT-COOLANT INTERACTION. , 2008, , .		3
121	Radiative Heat Transfer Modeling in Supersonic Gas Flow with Suspended Particles to a Blunt Body. , 2014, , .		3
122	Effect of ground-based environmental conditions on the level of dangerous ultraviolet solar radiation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 279, 108048.	2.3	3
123	AN IMPROVED SOLUTION FOR SHIELDING OF THERMAL RADIATION OF FIRES USING MIST CURTAINS OF PURE WATER OR SEA WATER. Computational Thermal Sciences, 2022, , .	0.9	3
124	An Extension of the Large-Cell Radiation Model for the Case of Semi-Transparent Nonisothermal Particles. , 2009, , .		2
125	Oscillatory Reversible Osmotic Growth of Sessile Saline Droplets on a Floating Polydimethylsiloxane Membrane. Fluids, 2021, 6, 232.	1.7	2
126	Heat Generation in Gold Nanorods Solutions due to Absorption of Near-Infrared Radiation. , 2017, , .		2

#	Article	IF	CITATIONS
127	NEW EXPERIMENTAL RESULTS ON DYNAMICS OF DROPLET CLUSTERS LEVITATING OVER THE LOCALLY HEATED WATER SURFACE. , 2018, , .		2
128	The hydrothermal liquefaction as a promising procedure for microalgae-to-biofuel conversion: A general review and some thermophysical problems to be solved. High Temperatures - High Pressures, 2020, 48, 309-351.	0.3	2
129	A hierarchical levitating cluster containing transforming small aggregates of water droplets. Microfluidics and Nanofluidics, 2022, 26, .	2.2	2
130	Levitating clusters of fluorinated fumed silica nanoparticles enable manufacture of liquid marbles: Co-occurrence of interfacial, thermal and electrostatic events. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129453.	4.7	2
131	Hierarchical liquid marbles formed using floating hydrophobic powder and levitating water droplets. Journal of Colloid and Interface Science, 2022, 626, 466-474.	9.4	2
132	A Simplified Model of Laser Hyperthermia of Superficial Tumors Including Variation of Human Tissue Optical Properties With Thermal Damage. , 2012, , .		1
133	A MODIFIED DIFFERENTIAL APPROXIMATION FOR THERMAL RADIATION OF SEMITRANSPARENT NONISOTHERMAL PARTICLES: APPLICATION TO OPTICAL DIAGNOSTICS OF PLASMA SPRAYING. , 2001, , .		1
134	A Combined P1 and Monte Carlo Model for Radiative Transfer in Multi-Dimensional Anisotropically Scattering Media. , 2010, , .		1
135	A NEW PROCEDURE OF HYDROTHERMAL LIQUEFACTION OF MICROALGAE AFTER DIFFERENT THERMOCHEMICAL PRE-TREATMENTS. , 2018, , .		1
136	Thermal conditions for the formation of self-assembled cluster of droplets over the water surface. Journal of Physics: Conference Series, 2021, 2116, 012038.	0.4	1
137	Specialty Grand Challenge for Heat Transfer and Thermal Power. , 2022, 2, .		1
138	Analysis of the effect of turbulence on thermal radiation transfer in a nonscattering medium. High Temperature, 2009, 47, 367-374.	1.0	0
139	The effect of clustering of particles on Rayleigh scattering of radiation in a turbulent flow. High Temperature, 2009, 47, 589-596.	1.0	0
140	Simple physical models for engineering estimates of radiative transfer in particle clouds and dispersed materials. , 2014, , .		0
141	Professor Oleg M. Alifanov on his 75th birthday. International Journal of Heat and Mass Transfer, 2016, 97, 1010-1011.	4.8	0
142	Academician Alexander Ivanovich Leontiev on his 90th birthday. International Journal of Heat and Mass Transfer, 2017, 109, 689.	4.8	0
143	Professor Yogesh Jaluria on his 70th Birthday. International Journal of Heat and Mass Transfer, 2019, 140, 1106-1107.	4.8	0
144	In Memoriam - Graham de Vahl Davis. International Journal of Heat and Mass Transfer, 2020, 152, 119486.	4.8	0

#	Article	IF	CITATIONS
145	Thermal Radiation From the Zone of Melt-Water Interaction: Computational Model and Some Numerical Results. , 2010, , .		0
146	SHIELDING OF FIRE RADIATION WITH THE USE OF MULTI-LAYERED WATER MIST CURTAINS: PRELIMINARY ESTIMATES. , 2016, , .		0
147	A GENERALIZED ANALYTICAL MODEL FOR RADIATIVE TRANSFER IN VACUUM THERMAL INSULATION OF SPACE VEHICLES. , 2016, , .		0
148	Heat Generation in Gold Nanorods Solutions due to Absorption of Near-Infrared Radiation. , 2017, , .		0
149	A NEW CONCEPT OF A SOLAR PROBE SHIELDING FROM INTENSE THERMAL RADIATION OF THE SUN. , 2017, , .		0
150	A NEW CONCEPT OF A SOLAR PROBE SHIELDING FROM INTENSE THERMAL RADIATION OF THE SUN. , 2017, , .		0
151	A MULTI-LAYERED COATING WITH EMBEDDED SMALL PARTICLES TO IMPROVE SHIELDING OF SPACE VEHICLES FROM INTENSE SOLAR IRRADIATION. , 2018, , .		0
152	A BACKUP SYSTEM OF A SPACECRAFT ORIENTATION BASED ON HEAT FLUX MEASUREMENTS AT THE STRUCTURE ELEMENTS OF VARIOUS ORIENTATIONS. , 2018, , .		0
153	TWO-STEP ITERATIVE METHOD FOR RADIATIVE TRANSFER CALCULATIONS IN AXISYMMETRIC FLAMES CONTAINING ABSORBING AND SCATTERING PARTICLES. , 2018, , .		0
154	COMBINED HEAT TRANSFER IN A SNOWPACK HEATED BY SOLAR RADIATION. , 2019, , .		0
155	ALTERNATIVE MODELS FOR OPTICAL PROPERTIES OF A HIGHLY-POROUS MEDIUM COMPOSED OF WOOD CHIPS. , 2019, , .		0
156	An estimate of size of copper nanoparticles levitating over the melt surface using the measurements of spectral reflectance. Journal of Physics: Conference Series, 2021, 2116, 012060.	0.4	0
157	Branched droplet clusters and the Kramers theorem. Physical Review E, 2022, 105, .	2.1	Ο