Peter T Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5405891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and Thermal Characterization of Halogenated Azidopyridines: Under-Reported Synthons for Medicinal Chemistry. Organic Letters, 2022, 24, 799-803.	4.6	8
2	Discovery of a Partial Glucokinase Activator Clinical Candidate: Diethyl ((3-(3-((5-(Azetidine-1-carbonyl)pyrazin-2-yl)oxy)-5-isopropoxybenzamido)-1 <i>H</i> -pyrazol-1-yl)methyl)phospho (BMS-820132). Journal of Medicinal Chemistry, 2022, 65, 4291-4317.	natæ	1
3	Alkene Difunctionalization Directed by Free Amines: Diamine Synthesis via Nickel-Catalyzed 1,2-Carboamination. ACS Catalysis, 2022, 12, 3890-3896.	11.2	23
4	A tautomeric ligand enables directed C‒H hydroxylation with molecular oxygen. Science, 2021, 372, 1452-1457.	12.6	84
5	Nickel-Catalyzed 1,2-Carboamination of Alkenyl Alcohols. Journal of the American Chemical Society, 2021, 143, 13962-13970.	13.7	56
6	Discovery of an Oxycyclohexyl Acid Lysophosphatidic Acid Receptor 1 (LPA ₁) Antagonist BMS-986278 for the Treatment of Pulmonary Fibrotic Diseases. Journal of Medicinal Chemistry, 2021, 64, 15549-15581.	6.4	21
7	Catalytic Ring Expansions of Cyclic Alcohols Enabled by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2019, 141, 8752-8757.	13.7	85
8	LPA1 antagonist BMS-986278 for idiopathic pulmonary fibrosis: Preclinical pharmacological in vitro and in vivo evaluation. , 2019, , .		4
9	Lysophosphatidic Acid Receptor Antagonism Protects against Diabetic Nephropathy in a Type 2 Diabetic Model. Journal of the American Society of Nephrology: JASN, 2017, 28, 3300-3311.	6.1	47
10	Ligand-accelerated non-directed C–H functionalization of arenes. Nature, 2017, 551, 489-493.	27.8	306
11	LPA1 antagonists BMS-986020 and BMS-986234 for idiopathic pulmonary fibrosis: Preclinical evaluation of hepatobiliary homeostasis. , 2017, , .		3
12	Ligandâ€Promoted Borylation of C(sp ³)ï£;H Bonds with Palladium(II) Catalysts. Angewandte Chemie - International Edition, 2016, 55, 785-789.	13.8	119
13	Synthesis and biological evaluation of novel pyrrolidine acid analogs as potent dual PPARα/γ agonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1196-1205.	2.2	10
14	Utilization of the Zucker Diabetic Fatty (ZDF) Rat Model for Investigating Hypoglycemia-related Toxicities. Toxicologic Pathology, 2015, 43, 825-837.	1.8	10
15	Synthesis and structure–activity relationships of 2-aryl-4-oxazolylmethoxy benzylglycines and 2-aryl-4-thiazolylmethoxy benzylglycines as novel, potent PPARα selective activators- PPARα and PPARγ selectivity modulation. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2933-2937.	2.2	11
16	Design, synthesis and structure–activity relationships of azole acids as novel, potent dual PPAR α/γ agonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1451-1456.	2.2	35
17	Discovery of azetidinone acids as conformationally-constrained dual PPARα/γ agonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1939-1944.	2.2	38
18	Design, synthesis, and structure–activity relationships of piperidine and dehydropiperidine carboxylic acids as novel, potent dual PPARα/γ agonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3545-3550.	2.2	6

Peter T Cheng

#	Article	IF	CITATIONS
19	Discovery of tertiary aminoacids as dual PPARα∫γ agonists-I. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2312-2316.	2.2	16
20	A rapid, homogeneous, fluorescence polarization binding assay for peroxisome proliferator-activated receptors alpha and gamma using a fluorescein-tagged dual PPARα/γ activator. Analytical Biochemistry, 2007, 363, 263-274.	2.4	27
21	PPARs as Targets for Metabolic and Cardiovascular Diseases. Mini-Reviews in Medicinal Chemistry, 2005, 5, 741-753.	2.4	35
22	Design and Synthesis ofN-[(4-Methoxyphenoxy)carbonyl]-N-[[4-[2-(5-) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 632	2 Td (meth	ıyl-2-phenyl-4-ı
	Peroxisome Proliferator-Activated Receptor α/γ Dual Agonist with Efficacious Glucose and Lipid-Lowering Activities. Journal of Medicinal Chemistry, 2005, 48, 2248-2250.	6.4	114