
N Angulakshmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5405876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric separator integrated with ferroelectric-BaTiO3 and mesoporous-CNT for the reutilization of soluble polysulfide in lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 893, 162272.	5.5	25
2	V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium–sulfur batteries. Chemical Engineering Journal, 2022, 431, 134205.	12.7	30
3	Influence of Additives on the Electrochemical and Interfacial Properties of SiO _{<i>x</i>} -Based Anode Materials for Lithium–Sulfur Batteries. Langmuir, 2022, 38, 2423-2434.	3.5	6
4	BaTiO ₃ - <i>g</i> -GO as an efficient permselective material for lithium–sulfur batteries. Materials Chemistry Frontiers, 2021, 5, 950-960.	5.9	12
5	Understanding the Electrolytes of Lithiumâ^'Sulfur Batteries. Batteries and Supercaps, 2021, 4, 1064-1095.	4.7	23
6	An efficient bi-functional permselective separator coated with cubic type-Li ₇ La ₃ Zr ₂ O ₁₂ and activated carbon for lithium–sulfur batteries. Sustainable Energy and Fuels, 2020, 4, 3500-3510.	4.9	15
7	The suppression of lithium dendrites by a triazine-based porous organic polymer-laden PEO-based electrolyte and its application for all-solid-state lithium batteries. Materials Chemistry Frontiers, 2020, 4, 933-940.	5.9	18
8	Microporous Metal–Organic Framework (MOF)-Based Composite Polymer Electrolyte (CPE) Mitigating Lithium Dendrite Formation in All-Solid-State-Lithium Batteries. ACS Omega, 2020, 5, 7885-7894.	3.5	55
9	Metal-organic frameworks based membrane as a permselective separator for lithium-sulfur batteries. Electrochimica Acta, 2018, 265, 151-159.	5.2	79
10	High performing magnesium aluminate-coated separator for lithium batteries. Ionics, 2018, 24, 3451-3457.	2.4	11
11	Metal–organic framework@SiO ₂ as permselective separator for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 14623-14632.	10.3	116
12	High performance multi-functional trilayer membranes as permselective separators for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2017, 4, 1013-1021.	6.0	25
13	Better performing composite cathode encompassing graphene and magnesium aluminate for Li–S batteries. Nano Structures Nano Objects, 2017, 11, 46-55.	3.5	18
14	A high-performance BaTiO ₃ -grafted-GO-laden poly(ethylene oxide)-based membrane as an electrolyte for all-solid lithium-batteries. Materials Chemistry Frontiers, 2017, 1, 269-277.	5.9	22
15	A flexible zirconium oxide based-ceramic membrane as a separator for lithium-ion batteries. RSC Advances, 2016, 6, 92020-92027.	3.6	36
16	Charge–discharge studies of all-solid-state Li/LiFePO ₄ cells with PEO-based composite electrolytes encompassing metal organic frameworks. RSC Advances, 2016, 6, 97180-97186.	3.6	50
17	Sisal-derived activated carbons for cost-effective lithium–sulfur batteries. RSC Advances, 2016, 6, 13772-13779.	3.6	45
18	MgAl2SiO6-incorporated poly(ethylene oxide)-based electrolytes for all-solid-state lithium batteries.	2.4	28

N Angulakshmi

#	Article	IF	CITATIONS
19	Electrospun Trilayer Polymeric Membranes as Separator for Lithium–ion Batteries. Electrochimica Acta, 2014, 127, 167-172.	5.2	79
20	Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries. Journal of Membrane Science, 2014, 471, 103-109.	8.2	71
21	Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries. Journal of Physical Chemistry C, 2014, 118, 24240-24247.	3.1	99
22	Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries. Electrochimica Acta, 2013, 90, 179-185.	5.2	95
23	Electrochemical Properties of Coconut Shell Flour-Incorporated Poly(vinylidenehexafluoropropylene)-Based Electrospun Membranes for Lithium Batteries. Science of Advanced Materials, 2013, 5, 606-611.	0.7	5
24	Synthesis and electrochemical properties of SnS as possible anode material for lithium batteries. Journal of Physics and Chemistry of Solids, 2012, 73, 1187-1190.	4.0	45
25	Calcium phosphate incorporated poly(ethylene oxide)â€based nanocomposite electrolytes for lithium batteries. I. Ionic conductivity and positron annihilation lifetime spectroscopy studies. Journal of Applied Polymer Science, 2012, 124, 3245-3254.	2.6	12
26	Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries. Ionics, 2011, 17, 407-414.	2.4	74
27	Influence of calix[2]â€ <i>p</i> â€benzo[4]pyrrole on the electrochemical properties of poly(ethylene) Tj ETQq1 1	0,784314	1 rgBT /Overlo
28	Physical and Electrochemical Properties of MgAl ₂ 0 ₄ -Incorporated Polymer Electrolytes Composed of Poly(ethylene oxide) and LiClO ₄ . Science of Advanced Materials, 2011, 3, 702-708.	0.7	6
29	Ionic conductivity and interfacial properties of nanochitin-incorporated polyethylene oxide–LiN(C2F5SO2)2 polymer electrolytes. Electrochimica Acta, 2010, 55, 1401-1406.	5.2	25
30	Studies on Chitin Dispersed Poly(ethylene oxide)-poly(methyl methacrylate) Blend Nanocomposite Electrolytes for Lithium Batteries. ECS Meeting Abstracts, 2010, , .	0.0	0
31	Interfacial Properties of Ca3(PO4)2-Incorporated Poly(ethylene oxide)-Based Nanocomposite Electrolytes Investigated by XPS and FTIR Studies. ECS Meeting Abstracts, 2010, , .	0.0	0