Maksim Boronoev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/540586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platinum and palladium nanoparticles in modified mesoporous phenol—formaldehyde polymers as hydrogenation catalysts. Petroleum Chemistry, 2016, 56, 109-120.	1.4	18
2	Palladium Catalysts Based on Mesoporous Organic Materials in Semihydrogenation of Alkynes. Macromolecular Symposia, 2016, 363, 57-63.	0.7	15
3	Hydroprocessing of Aromatics Using Sulfide Catalysts Supported on Ordered Mesoporous Phenol–Formaldehyde Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1253-1258.	3.7	13
4	Mesoporous organo-inorganic hybrid materials as hydrogenation catalysts. Pure and Applied Chemistry, 2017, 89, 1157-1166.	1.9	9
5	Bimetallic sulfide catalysts based on mesoporous organic supports in the hydrofining of light cycle oil. Petroleum Chemistry, 2017, 57, 855-858.	1.4	9
6	Guaiacol Hydrogenation in an Aqueous Medium in the Presence of a Palladium Catalyst Supported on a Mesoporous Dendrimer-Containing Polymer. Petroleum Chemistry, 2018, 58, 407-411.	1.4	9
7	A Nanospherical Mesoporous Ruthenium-Containing Polymer as a Guaiacol Hydrogenation Catalyst. Petroleum Chemistry, 2019, 59, 1300-1306.	1.4	7
8	Hybrid catalysts based on platinum and palladium nanoparticles for the hydrogenation of terpenes under slurry conditions. Petroleum Chemistry, 2016, 56, 1114-1122.	1.4	6
9	Hydroconversion of Naphthalene in the Presence of NiMoS/NiWS-AlCl3 Catalyst Systems Derived from Mesoporous Aromatic Frameworks. Chemistry and Technology of Fuels and Oils, 2018, 53, 879-884.	0.5	5
10	Ruthenium- and Palladium-Containing Catalysts Based on Mesoporous Polymer Nanospheres in Guaiacol Hydrogenation. Petroleum Chemistry, 2020, 60, 1136-1140.	1.4	5
11	Nickel–molybdenum sulfide catalysts supported on an ordered mesoporous polymer for hydrogenating–hydrocracking of model biaromatic petroleum compounds. Petroleum Chemistry, 2017, 57, 673-677.	1.4	4
12	Hydrotreating of Middle Petroleum Fractions of Various Compositions in the Presence of Catalysts Immobilized in Pores of Aromatic Frameworks. Petroleum Chemistry, 2020, 60, 307-309.	1.4	3
13	Hydrogenation of Unsaturated Hydrocarbons on Platinum and Palladium Catalysts Encapsulated in Mesoporous Bakelites. Chemistry and Technology of Fuels and Oils, 2017, 53, 318-332.	0.5	2
14	Selective Hydrogenation of Phenylacetylene on a Pd-Containing Catalyst Based on a Polymer Layered Substrate. Russian Journal of Applied Chemistry, 2020, 93, 258-267.	0.5	1
15	Hydroprocessing of Vacuum Gas Oil on NiMo Sulfide Catalyst Supported on an Ordered Mesoporous Polymer. Russian Journal of Applied Chemistry, 2019, 92, 300-303.	0.5	0