Jess vila de Grado

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5405069/jesus-avila-de-grado-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

475
papers

23,903
citations

82
h-index

9-index

500
ext. papers

26,710
ext. citations

82
h-index

7.08
L-index

#	Paper	IF	Citations
475	Microtubule-associated protein tau in murine kidney: role in podocyte architecture <i>Cellular and Molecular Life Sciences</i> , 2022 , 79, 97	10.3	1
474	p38 Inhibition Decreases Tau Toxicity in Microglia and Improves Their Phagocytic Function <i>Molecular Neurobiology</i> , 2022 , 59, 1632	6.2	1
473	TNAP upregulation is a critical factor in Tauopathies and its blockade ameliorates neurotoxicity and increases life-expectancy <i>Neurobiology of Disease</i> , 2022 , 165, 105632	7.5	O
472	p38 activation occurs mainly in microglia in the P301S Tauopathy mouse model <i>Scientific Reports</i> , 2022 , 12, 2130	4.9	0
471	GSK3∄not GSK3∏drives hippocampal NMDAR-dependent LTD via tau-mediated spine anchoring. <i>EMBO Journal</i> , 2021 , 40, e105513	13	60
470	Tau phosphorylation by glycogen synthase kinase 3Imodulates enzyme acetylcholinesterase expression. <i>Journal of Neurochemistry</i> , 2021 , 157, 2091-2105	6	6
469	GSK-3 and Tau: A Key Duet in Alzheimer's Disease. <i>Cells</i> , 2021 , 10,	7.9	26
468	Alzheimer's Disease and Empathic Abilities: The Proposed Role of the Cingulate Cortex. <i>Journal of Alzheimerks Disease Reports</i> , 2021 , 5, 345-352	3.3	1
467	A new non-aggregative splicing isoform of human Tau is decreased in Alzheimer's disease. <i>Acta Neuropathologica</i> , 2021 , 142, 159-177	14.3	3
466	GSK-3I\$9A overexpression leads murine hippocampal neural precursors to acquire an astroglial phenotype in vivo. <i>Developmental Neurobiology</i> , 2021 , 81, 710-723	3.2	
465	A Multilevel View of the Development of Alzheimer's Disease. <i>Neuroscience</i> , 2021 , 457, 283-293	3.9	18
464	Brain aging, epigenetic changes, tau and neurodegeneration. <i>Aging Brain</i> , 2021 , 1, 100004		
463	Focal cerebral ischemia induces changes in oligodendrocytic tau isoforms in the damaged area. <i>Glia</i> , 2020 , 68, 2471-2485	9	5
462	Tauopathy Analysis in P301S Mouse Model of Alzheimer Disease Immunized With DNA and MVA Poxvirus-Based Vaccines Expressing Human Full-Length 4R2N or 3RC Tau Proteins. <i>Vaccines</i> , 2020 , 8,	5.3	4
461	The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	23
460	Differences Between Human and Murine Tau at the N-terminal End. <i>Frontiers in Aging Neuroscience</i> , 2020 , 12, 11	5.3	11
459	Unraveling human adult hippocampal neurogenesis. <i>Nature Protocols</i> , 2020 , 15, 668-693	18.8	30

(2019-2020)

458	Reelin reverts biochemical, physiological and cognitive alterations in mouse models of Tauopathy. <i>Progress in Neurobiology</i> , 2020 , 186, 101743	10.9	7
457	Overexpression of GSK-3[In Adult Tet-OFF GSK-3[Transgenic Mice, and Not During Embryonic or Postnatal Development, Induces Tau Phosphorylation, Neurodegeneration and Learning Deficits. <i>Frontiers in Molecular Neuroscience</i> , 2020 , 13, 561470	6.1	3
456	Microglia in Alzheimer's Disease in the Context of Tau Pathology. <i>Biomolecules</i> , 2020 , 10,	5.9	22
455	In[Vivo Reprogramming Ameliorates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. <i>Stem Cell Reports</i> , 2020 , 15, 1056-1066	8	18
454	Tau Protein as a New Regulator of Cellular Prion Protein Transcription. <i>Molecular Neurobiology</i> , 2020 , 57, 4170-4186	6.2	2
453	Protein Biomarkers for the Diagnosis of Alzheimer's Disease at Different Stages of Neurodegeneration. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	3
452	A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease. <i>Frontiers in Immunology</i> , 2020 , 11, 456	8.4	87
451	Role of tau N-terminal motif in the secretion of human tau by End Binding proteins. <i>PLoS ONE</i> , 2019 , 14, e0210864	3.7	20
450	Peripheral nervous system effects in the PS19 tau transgenic mouse model of tauopathy. <i>Neuroscience Letters</i> , 2019 , 698, 204-208	3.3	4
449	GSK3Ibverexpression driven by GFAP promoter improves rotarod performance. <i>Brain Research</i> , 2019 , 1712, 47-54	3.7	4
448	Extracellular Monomeric Tau Is Internalized by Astrocytes. Frontiers in Neuroscience, 2019, 13, 442	5.1	52
447	Activity-Dependent Reconnection of Adult-Born Dentate Granule Cells in a Mouse Model of Frontotemporal Dementia. <i>Journal of Neuroscience</i> , 2019 , 39, 5794-5815	6.6	4
446	Lithium as a Treatment for Alzheimer's Disease: The Systems Pharmacology Perspective. <i>Journal of Alzheimerks Disease</i> , 2019 , 69, 615-629	4.3	28
445	The Social Component of Environmental Enrichment Is a Pro-neurogenic Stimulus in Adult c57BL6 Female Mice. <i>Frontiers in Cell and Developmental Biology</i> , 2019 , 7, 62	5.7	15
444	Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. <i>Nature Medicine</i> , 2019 , 25, 554-560	50.5	655
443	Phospho-Tau Changes in the Human CA1 During Alzheimer's Disease Progression. <i>Journal of Alzheimerks Disease</i> , 2019 , 69, 277-288	4.3	14
442	A walk through tau therapeutic strategies. Acta Neuropathologica Communications, 2019, 7, 22	7.3	133
441	Differences in structure and function between human and murine tau. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2019 , 1865, 2024-2030	6.9	10

440	Adeno-associated viral vector serotype 9-based gene therapy for Niemann-Pick disease type A. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	25
439	Tau is required for the function of extrasynaptic NMDA receptors. Scientific Reports, 2019, 9, 9116	4.9	16
438	Propagation of Tau via Extracellular Vesicles. Frontiers in Neuroscience, 2019, 13, 698	5.1	43
437	Mitophagy Failure in APP and Tau Overexpression Model of Alzheimer's Disease. <i>Journal of Alzheimerks Disease</i> , 2019 , 70, 525-540	4.3	14
436	Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer's disease. <i>Scientific Reports</i> , 2019 , 9, 15437	4.9	37
435	Differential accumulation of Tau phosphorylated at residues Thr231, Ser262 and Thr205 in hippocampal interneurons and its modulation by Tau mutations (VLW) and amyloid-[peptide. <i>Neurobiology of Disease</i> , 2019 , 125, 232-244	7.5	10
434	Maturation Dynamics of the Axon Initial Segment (AIS) of Newborn Dentate Granule Cells in Young Adult C57BL/6J Mice. <i>Journal of Neuroscience</i> , 2019 , 39, 1605-1620	6.6	10
433	New Beginnings in Alzheimer's Disease: The Most Prevalent Tauopathy. <i>Journal of Alzheimerks Disease</i> , 2018 , 64, S529-S534	4.3	4
432	Untold New Beginnings: Adult Hippocampal Neurogenesis and Alzheimer's Disease. <i>Journal of Alzheimerks Disease</i> , 2018 , 64, S497-S505	4.3	10
431	Our Working Point of View of Tau Protein. <i>Journal of Alzheimerks Disease</i> , 2018 , 62, 1277-1285	4.3	8
430	Benefit of Oleuropein Aglycone for Alzheimer's Disease by Promoting Autophagy. <i>Oxidative Medicine and Cellular Longevity</i> , 2018 , 2018, 5010741	6.7	52
429	Frontotemporal Dementia-Associated N279K Tau Mutation Localizes at the Nuclear Compartment. <i>Frontiers in Cellular Neuroscience</i> , 2018 , 12, 202	6.1	4
428	The Role of Microglia in the Spread of Tau: Relevance for Tauopathies. <i>Frontiers in Cellular Neuroscience</i> , 2018 , 12, 172	6.1	46
427	Tau Spreading Mechanisms; Implications for Dysfunctional Tauopathies. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	28
426	Decreased CX3CL1 Levels in the Cerebrospinal Fluid of Patients With Alzheimer's Disease. <i>Frontiers in Neuroscience</i> , 2018 , 12, 609	5.1	24
425	Fragmentation of the Golgi Apparatus in Neuroblastoma Cells Is Associated with Tau-Induced Ring-Shaped Microtubule Bundles. <i>Journal of Alzheimerks Disease</i> , 2018 , 65, 1185-1207	4.3	2
424	Microtubule Proteins in Neuronal Cells 2018 , 193-257		2
423	Profiling of Argonaute-2-loaded microRNAs in a mouse model of frontotemporal dementia with parkinsonism-17. <i>International Journal of Physiology, Pathophysiology and Pharmacology</i> , 2018 , 10, 172-	18 3	2

(2017-2018)

422	Human Brain Single Nucleotide Polymorphism: Validation of DNA Sequencing. <i>Journal of Alzheimerks Disease Reports</i> , 2018 , 2, 103-109	3.3	1
421	MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. <i>Frontiers in Molecular Neuroscience</i> , 2018 , 11, 442	6.1	13
420	Bi-directional genetic modulation of GSK-3lexacerbates hippocampal neuropathology in experimental status epilepticus. <i>Cell Death and Disease</i> , 2018 , 9, 969	9.8	16
419	Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. <i>Experimental Neurology</i> , 2018 , 310, 14-21	5.7	24
418	Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro. <i>Biomolecular Concepts</i> , 2018 , 9, 1-11	3.7	9
417	HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain. <i>Molecular Neurobiology</i> , 2017 , 54, 188-199	6.2	8
416	Tau-positive nuclear indentations in P301S tauopathy mice. <i>Brain Pathology</i> , 2017 , 27, 314-322	6	9
415	Alzheimer's disease as an inflammatory disease. <i>Biomolecular Concepts</i> , 2017 , 8, 37-43	3.7	134
414	Validation of Suspected Somatic Single Nucleotide Variations in the Brain of Alzheimer's Disease Patients. <i>Journal of Alzheimerls Disease</i> , 2017 , 56, 977-990	4.3	6
413	Phospho-Tau Accumulation and Structural Alterations of the Golgi Apparatus of Cortical Pyramidal Neurons in the P301S Tauopathy Mouse Model. <i>Journal of Alzheimerk Disease</i> , 2017 , 60, 651-661	4.3	6
412	Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons. <i>Brain</i> , 2017 , 140, 3269-3285	11.2	48
411	Slower Dynamics and Aged Mitochondria in Sporadic Alzheimer's Disease. <i>Oxidative Medicine and Cellular Longevity</i> , 2017 , 2017, 9302761	6.7	56
410	Atypical, non-standard functions of the microtubule associated Tau protein. <i>Acta Neuropathologica Communications</i> , 2017 , 5, 91	7.3	110
409	EuroTau: towing scientists to tau without tautology. <i>Acta Neuropathologica Communications</i> , 2017 , 5, 90	7.3	5
408	Absence of CX3CR1 impairs the internalization of Tau by microglia. <i>Molecular Neurodegeneration</i> , 2017 , 12, 59	19	90
407	[F3 0 7 0 1]: TAU SECRETION AND PROPAGATION 2017 , 13, P887-P888		
406	Building Bridges through Science. <i>Neuron</i> , 2017 , 96, 730-735	13.9	2
405	Toward common mechanisms for risk factors in Alzheimer's syndrome. <i>Alzheimerk</i> and Dementia: Translational Research and Clinical Interventions, 2017 , 3, 571-578	6	20

404	Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease. <i>Neuroscience Letters</i> , 2017 , 655, 101-1	083.3	6
403	Glycogen synthase kinase-3lregulates fractalkine production by altering its trafficking from Golgi to plasma membrane: implications for Alzheimer's disease. <i>Cellular and Molecular Life Sciences</i> , 2017 , 74, 1153-1163	10.3	8
402	The GABAergic septohippocampal connection is impaired in a mouse model of tauopathy. <i>Neurobiology of Aging</i> , 2017 , 49, 40-51	5.6	20
401	Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1. <i>Nature Communications</i> , 2017 , 8, 2275	17.4	11
400	GSK-3IDverexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus. <i>Frontiers in Neuroanatomy</i> , 2017 , 11, 18	3.6	14
399	Cognitive Decline in Neuronal Aging and Alzheimer's Disease: Role of NMDA Receptors and Associated Proteins. <i>Frontiers in Neuroscience</i> , 2017 , 11, 626	5.1	27
398	Commentary: Genome-wide association study identifies 74 loci associated with educational attainment. <i>Frontiers in Molecular Neuroscience</i> , 2017 , 10, 23	6.1	3
397	Mitophagy Failure in Fibroblasts and iPSC-Derived Neurons of Alzheimer's Disease-Associated Presenilin 1 Mutation. <i>Frontiers in Molecular Neuroscience</i> , 2017 , 10, 291	6.1	62
396	Protocols for Monitoring the Development of Tau Pathology in Alzheimer's Disease. <i>Methods in Molecular Biology</i> , 2016 , 1303, 143-60	1.4	2
395	Decreased adult neurogenesis in hibernating Syrian hamster. <i>Neuroscience</i> , 2016 , 333, 181-92	3.9	18
394	A Simple Model to Study Tau Pathology. <i>Journal of Experimental Neuroscience</i> , 2016 , 10, 31-8	3.6	18
393	Expression of Tau Produces Aberrant Plasma Membrane Blebbing in Glial Cells Through RhoA-ROCK-Dependent F-Actin Remodeling. <i>Journal of Alzheimerks Disease</i> , 2016 , 52, 463-82	4.3	9
392	Retroviral induction of GSK-3lexpression blocks the stimulatory action of physical exercise on the maturation of newborn neurons. <i>Cellular and Molecular Life Sciences</i> , 2016 , 73, 3569-82	10.3	12
391	Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. <i>Translational Psychiatry</i> , 2016 , 6, e718	8.6	101
390	Tau pathology-mediated presynaptic dysfunction. <i>Neuroscience</i> , 2016 , 325, 30-8	3.9	42
389	GSK3IDverexpression in Dentate Gyrus Neural Precursor Cells Expands the Progenitor Pool and Enhances Memory Skills. <i>Journal of Biological Chemistry</i> , 2016 , 291, 8199-213	5.4	17
388	PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease. <i>Human Molecular Genetics</i> , 2016 , 25, 792-806	5.6	94
387	Forced swimming sabotages the morphological and synaptic maturation of newborn granule neurons and triggers a unique pro-inflammatory milieu in the hippocampus. <i>Brain, Behavior, and Immunity</i> , 2016 , 53, 242-254	16.6	27

(2015-2016)

386	Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. <i>Expert Opinion on Therapeutic Targets</i> , 2016 , 20, 653-61	6.4	19
385	Direct Evidence of Internalization of Tau by Microglia In Vitro and In Vivo. <i>Journal of Alzheimerk</i> s <i>Disease</i> , 2016 , 50, 77-87	4.3	113
384	Tau Structures. Frontiers in Aging Neuroscience, 2016 , 8, 262	5.3	55
383	New Features about Tau Function and Dysfunction. <i>Biomolecules</i> , 2016 , 6,	5.9	54
382	Novel function of Tau in regulating the effects of external stimuli on adult hippocampal neurogenesis. <i>EMBO Journal</i> , 2016 , 35, 1417-36	13	56
381	Tau antagonizes end-binding protein tracking at microtubule ends through a phosphorylation-dependent mechanism. <i>Molecular Biology of the Cell</i> , 2016 , 27, 2924-34	3.5	40
380	Secretion of full-length tau or tau fragments in a cell culture model. <i>Neuroscience Letters</i> , 2016 , 634, 63-69	3.3	17
379	Excitotoxicity induced by kainic acid provokes glycogen synthase kinase-3 truncation in the hippocampus. <i>Brain Research</i> , 2015 , 1611, 84-92	3.7	3
378	Inhibition of PMCA activity by tau as a function of aging and Alzheimer's neuropathology. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2015 , 1852, 1465-76	6.9	24
377	Additional mechanisms conferring genetic susceptibility to Alzheimer's disease. <i>Frontiers in Cellular Neuroscience</i> , 2015 , 9, 138	6.1	23
376	Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells. <i>Journal of Neurochemistry</i> , 2015 , 133, 653-67	6	54
375	TNAP Plays a Key Role in Neural Differentiation as well as in Neurodegenerative Disorders. <i>Sub-Cellular Biochemistry</i> , 2015 , 76, 375-85	5.5	8
374	Novel connection between newborn granule neurons and the hippocampal CA2 field. <i>Experimental Neurology</i> , 2015 , 263, 285-92	5.7	43
373	Tau regulates the localization and function of End Binding proteins in neuronal cells. <i>SpringerPlus</i> , 2015 , 4, L16		1
372	AD genetic risk factors and tau spreading. Frontiers in Aging Neuroscience, 2015, 7, 99	5.3	12
371	Alternative neural circuitry that might be impaired in the development of Alzheimer disease. <i>Frontiers in Neuroscience</i> , 2015 , 9, 145	5.1	5
370	Further understanding of tau phosphorylation: implications for therapy. <i>Expert Review of Neurotherapeutics</i> , 2015 , 15, 115-22	4.3	33
369	Tissue-nonspecific Alkaline Phosphatase Regulates Purinergic Transmission in the Central Nervous System During Development and Disease. <i>Computational and Structural Biotechnology Journal</i> , 2015 , 13, 95-100	6.8	39

368	The Ever-Changing Morphology of Hippocampal Granule Neurons in Physiology and Pathology. <i>Frontiers in Neuroscience</i> , 2015 , 9, 526	5.1	29
367	Distinct X-chromosome SNVs from some sporadic AD samples. <i>Scientific Reports</i> , 2015 , 5, 18012	4.9	11
366	MDMA impairs mitochondrial neuronal trafficking in a Tau- and Mitofusin2/Drp1-dependent manner. <i>Archives of Toxicology</i> , 2014 , 88, 1561-72	5.8	15
365	New insights into the role of glycogen synthase kinase-3 in Alzheimer's disease. <i>Expert Opinion on Therapeutic Targets</i> , 2014 , 18, 69-77	6.4	36
364	New perspectives on the role of tau in Alzheimer's disease. Implications for therapy. <i>Biochemical Pharmacology</i> , 2014 , 88, 540-7	6	87
363	Tau protein provides DNA with thermodynamic and structural features which are similar to those found in histone-DNA complex. <i>Journal of Alzheimerks Disease</i> , 2014 , 39, 649-60	4.3	23
362	Huntington's disease is a four-repeat tauopathy with tau nuclear rods. <i>Nature Medicine</i> , 2014 , 20, 881-5	50.5	135
361	A proteomic approach for the involvement of the GAPDH in Alzheimer disease in the blood of Moroccan FAD cases. <i>Journal of Molecular Neuroscience</i> , 2014 , 54, 774-9	3.3	6
360	Somatic signature of brain-specific single nucleotide variations in sporadic Alzheimer's disease. Journal of Alzheimerks Disease, 2014 , 42, 1357-82	4.3	31
359	Tau triggers tear secretion by interacting with muscarinic acetylcholine receptors in New Zealand white rabbits. <i>Journal of Alzheimerk Disease</i> , 2014 , 40 Suppl 1, S71-7	4.3	2
358	Sources of extracellular tau and its signaling. <i>Journal of Alzheimerk Disease</i> , 2014 , 40 Suppl 1, S7-S15	4.3	22
357	The mixture of "ecstasy" and its metabolites impairs mitochondrial fusion/fission equilibrium and trafficking in hippocampal neurons, at in vivo relevant concentrations. <i>Toxicological Sciences</i> , 2014 , 139, 407-20	4.4	22
356	"Tau oligomers," what we know and what we don't know. Frontiers in Neurology, 2014, 5, 1	4.1	96
355	GSK-3🏿 pivotal kinase in Alzheimer disease. <i>Frontiers in Molecular Neuroscience</i> , 2014 , 7, 46	6.1	285
354	Boronate-tau mediated uptake in neurons. <i>Journal of Alzheimerks Disease</i> , 2014 , 40, 143-51	4.3	
353	TAU TRANSPORT FROM CELL TO CELL 2014 , 10, P161-P161		
352	Thermodynamics of the interaction between Alzheimer's disease related tau protein and DNA. <i>PLoS ONE</i> , 2014 , 9, e104690	3.7	29
351	Variations in brain DNA. Frontiers in Aging Neuroscience, 2014 , 6, 323	5.3	5

(2013-2014)

350	Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease. <i>Frontiers in Neuroanatomy</i> , 2014 , 8, 38	3.6	55
349	The role of extracellular Tau in the spreading of neurofibrillary pathology. <i>Frontiers in Cellular Neuroscience</i> , 2014 , 8, 113	6.1	106
348	Argyrophilic grain pathology as a natural model of tau propagation. <i>Journal of Alzheimerks Disease</i> , 2014 , 40 Suppl 1, S123-33	4.3	12
347	Is tau a prion-like protein?. Journal of Alzheimerks Disease, 2014, 40 Suppl 1, S1-3	4.3	7
346	Regulation of EB1/3 proteins by classical MAPs in neurons. <i>Bioarchitecture</i> , 2014 , 4, 1-5		10
345	Crosstalk between axonal classical microtubule-associated proteins and end binding proteins during axon extension: possible implications in neurodegeneration. <i>Journal of Alzheimerk Disease</i> , 2014 , 40 Suppl 1, S17-22	4.3	7
344	Similarities and differences between exome sequences found in a variety of tissues from the same individual. <i>PLoS ONE</i> , 2014 , 9, e101412	3.7	5
343	Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics. <i>Cellular and Molecular Life Sciences</i> , 2013 , 70, 357-71	10.3	11
342	Understanding the relationship between GSK-3 and Alzheimer's disease: a focus on how GSK-3 can modulate synaptic plasticity processes. <i>Expert Review of Neurotherapeutics</i> , 2013 , 13, 495-503	4.3	25
341	MAP1B-dependent Rac activation is required for AMPA receptor endocytosis during long-term depression. <i>EMBO Journal</i> , 2013 , 32, 2287-99	13	34
340	Kidins220 accumulates with tau in human Alzheimer's disease and related models: modulation of its calpain-processing by GSK3/PP1 imbalance. <i>Human Molecular Genetics</i> , 2013 , 22, 466-82	5.6	22
339	Hyperexcitability and epileptic seizures in a model of frontotemporal dementia. <i>Neurobiology of Disease</i> , 2013 , 58, 200-8	7.5	62
338	GSK3 and tau: two convergence points in Alzheimer's disease. <i>Journal of Alzheimerks Disease</i> , 2013 , 33 Suppl 1, S141-4	4.3	162
337	MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells. <i>EMBO Journal</i> , 2013 , 32, 1293-306	13	61
336	Changes in tau phosphorylation in hibernating rodents. <i>Journal of Neuroscience Research</i> , 2013 , 91, 954	I-6 ₁₂₄	16
335	The influence of phospho-lbn dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease. <i>Brain</i> , 2013 , 136, 1913-28	11.2	84
334	Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. <i>Mediators of Inflammation</i> , 2013 , 2013, 260925	4.3	97
333	Dual effects of increased glycogen synthase kinase-3lactivity on adult neurogenesis. <i>Human Molecular Genetics</i> , 2013 , 22, 1300-15	5.6	41

332	The involvement of cholinergic neurons in the spreading of tau pathology. <i>Frontiers in Neurology</i> , 2013 , 4, 74	4.1	15
331	DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. <i>Brain</i> , 2013 , 136, 3018-27	11.2	104
330	Alterations in the nuclear architecture produced by the overexpression of tau protein in neuroblastoma cells. <i>Journal of Alzheimerks Disease</i> , 2013 , 36, 503-20	4.3	15
329	Specific profile of tau isoforms in argyrophylic grain disease. <i>Journal of Experimental Neuroscience</i> , 2013 , 7, 51-9	3.6	3
328	Microtubule depolymerization and tau phosphorylation. <i>Journal of Alzheimerks Disease</i> , 2013 , 37, 507-1.	34.3	15
327	Use of okadaic acid to identify relevant phosphoepitopes in pathology: a focus on neurodegeneration. <i>Marine Drugs</i> , 2013 , 11, 1656-68	6	20
326	Phosphorylation of Tau Protein Associated as a Protective Mechanism in the Presence of Toxic, C-Terminally Truncated Tau in Alzheimer's Disease 2013 ,		7
325	Beta-amyloid impairs reelin signaling. <i>PLoS ONE</i> , 2013 , 8, e72297	3.7	26
324	Deconstructing mitochondrial dysfunction in Alzheimer disease. <i>Oxidative Medicine and Cellular Longevity</i> , 2013 , 2013, 162152	6.7	86
323	Tau and neuron aging 2013 , 4, 23-8		8
322	Epigenetic control of somatostatin and cortistatin expression by Damyloid peptide. <i>Journal of Neuroscience Research</i> , 2012 , 90, 13-20	4.4	9
321	Altered expression of brain acetylcholinesterase in FTDP-17 human tau transgenic mice. <i>Neurobiology of Aging</i> , 2012 , 33, 624.e23-34	5.6	19
320	Patient-derived olfactory mucosa cells but not lung or skin fibroblasts mediate axonal regeneration of retinal ganglion neurons. <i>Neuroscience Letters</i> , 2012 , 509, 27-32	3.3	17
319	Tau Phosphorylation by GSK3 in Different Conditions. <i>International Journal of Alzheimerks Disease</i> , 2012 , 2012, 578373	3.7	57
318	Tau protein and adult hippocampal neurogenesis. Frontiers in Neuroscience, 2012, 6, 104	5.1	48
317	Structural and Functional Relationships Between GSK3\(\hat{\text{B}}\) nd GSK3\(\hat{\text{Proteins}}\). Current Biotechnology , 2012 , 1, 80-87	0.6	2
316	Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles. <i>FEBS Letters</i> , 2012 , 586, 47-54	3.8	114
315	Looking for novel functions of tau. <i>Biochemical Society Transactions</i> , 2012 , 40, 653-5	5.1	15

314	Tau overexpression results in its secretion via membrane vesicles. <i>Neurodegenerative Diseases</i> , 2012 , 10, 73-5	2.3	61
313	Tau isoform with three microtubule binding domains is a marker of new axons generated from the subgranular zone in the hippocampal dentate gyrus: implications for Alzheimer's disease. <i>Journal of Alzheimerks Disease</i> , 2012 , 29, 921-30	4.3	27
312	Tau Phosphorylation. <i>Advances in Neurobiology</i> , 2011 , 73-82	2.1	2
311	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. <i>Nature Genetics</i> , 2011 , 43, 699-705	36.3	386
310	Tau regulates the subcellular localization of calmodulin. <i>Biochemical and Biophysical Research Communications</i> , 2011 , 408, 500-4	3.4	11
309	Calpain regulates N-terminal interaction of GSK-3Iwith 14-3-3Ip53 and PKB but not with axin. <i>Neurochemistry International</i> , 2011 , 59, 97-100	4.4	11
308	Expression of frontotemporal dementia with parkinsonism associated to chromosome 17 tau induces specific degeneration of the ventral dentate gyrus and depressive-like behavior in mice. <i>Neuroscience</i> , 2011 , 196, 215-27	3.9	12
307	Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA. <i>Frontiers in Synaptic Neuroscience</i> , 2011 , 3, 3	3.5	27
306	Different susceptibility to neurodegeneration of dorsal and ventral hippocampal dentate gyrus: a study with transgenic mice overexpressing GSK3\(\textit{IPLoS ONE}\), 2011 , 6, e27262	3.7	24
305	A neuroregenerative human ensheathing glia cell line with conditional rapid growth. <i>Cell Transplantation</i> , 2011 , 20, 153-66	4	8
304	GSK-3 Mouse Models to Study Neuronal Apoptosis and Neurodegeneration. <i>Frontiers in Molecular Neuroscience</i> , 2011 , 4, 45	6.1	49
303	A culture model for neurite regeneration of human spinal cord neurons. <i>Journal of Neuroscience Methods</i> , 2011 , 201, 346-54	3	8
302	Abnormal tau phosphorylation in the thorny excrescences of CA3 hippocampal neurons in patients with Alzheimer's disease. <i>Journal of Alzheimerks Disease</i> , 2011 , 26, 683-98	4.3	33
301	Ultrastructural localization of fructose-1,6-bisphosphatase in mouse brain. <i>Microscopy Research and Technique</i> , 2011 , 74, 329-36	2.8	4
300	Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. <i>Glia</i> , 2011 , 59, 1458-71	9	15
299	Muscarinic receptors and Alzheimer disease. Neurodegenerative Disease Management, 2011, 1, 267-26	9 2.8	2
298	Revisiting the Role of Acetylcholinesterase in Alzheimer's Disease: Cross-Talk with P-tau and EAmyloid. <i>Frontiers in Molecular Neuroscience</i> , 2011 , 4, 22	6.1	141
297	Microtubule-associated protein 1B (MAP1B) is required for dendritic spine development and synaptic maturation. <i>Journal of Biological Chemistry</i> , 2011 , 286, 40638-48	5.4	69

296	Neurotoxicity induced by okadaic acid in the human neuroblastoma SH-SY5Y line can be differentially prevented by and neuroblastoma SH-SY5Y line can be differentially prevented by and neuroblastoma SH-SY5Y line can be differentially prevented by and neuroblastoma SH-SY5Y line can be differentially prevented by and neuroblastoma SH-SY5Y line can be differentially neuroblastoma SH-SY5Y line can be differentially prevented by neuroblastoma SH-SY5Y line can be differentially neuroblastoma SH-SY5Y line can be differentially prevented by neuroblastoma SH-SY5Y line can be differentially neuroblastoma SH-SY5Y line can be differentially prevented by neuroblastoma SH-SY5Y line can be differentially neuroblastoma SH-SY5Y line can be differentially prevented by neuroblastoma SH-SY5Y line can be differentially neuroblastoma SH-SY5Y line can be dif	4.4	41
295	Role of tau protein on neocortical and hippocampal oscillatory patterns. <i>Hippocampus</i> , 2011 , 21, 827-34	1 3.5	18
294	GSK3D verexpression induces neuronal death and a depletion of the neurogenic niches in the dentate gyrus. <i>Hippocampus</i> , 2011 , 21, 910-22	3.5	61
293	GSK3IIs involved in the relief of mitochondria pausing in a Tau-dependent manner. <i>PLoS ONE</i> , 2011 , 6, e27686	3.7	39
292	Selenomethionine incorporation into amyloid sequences regulates fibrillogenesis and toxicity. <i>PLoS ONE</i> , 2011 , 6, e27999	3.7	13
291	Overcoming cell death and tau phosphorylation mediated by PI3K-inhibition: a cell assay to measure neuroprotection. <i>CNS and Neurological Disorders - Drug Targets</i> , 2011 , 10, 208-14	2.6	12
290	Common mechanisms in neurodegeneration. <i>Nature Medicine</i> , 2010 , 16, 1372	50.5	17
289	Intracellular and extracellular tau. <i>Frontiers in Neuroscience</i> , 2010 , 4, 49	5.1	27
288	Neuronal models for studying tau pathology. <i>International Journal of Alzheimerks Disease</i> , 2010 , 2010,	3.7	1
287	Prospects on the origin of Alzheimer's disease. <i>Journal of Alzheimerk Disease</i> , 2010 , 20, 669-72	4.3	3
286	Alzheimer Center Reina Sofia Foundation: fighting the disease and providing overall solutions. Journal of Alzheimerks Disease, 2010 , 21, 337-48	4.3	24
285	Centro de Biologia Molecular "Severo Ochoa": a center for basic research into Alzheimer's disease. Journal of Alzheimerks Disease, 2010 , 21, 325-35	4.3	
284	Expression of Somatostatin, cortistatin, and their receptors, as well as dopamine receptors, but not of neprilysin, are reduced in the temporal lobe of Alzheimer's disease patients. <i>Journal of Alzheimerks Disease</i> , 2010 , 20, 465-75	4.3	48
283	MAP1B regulates axonal development by modulating Rho-GTPase Rac1 activity. <i>Molecular Biology of the Cell</i> , 2010 , 21, 3518-28	3.5	69
282	Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. Journal of Biological Chemistry, 2010 , 285, 32539-48	5.4	122
281	Tau kinase I overexpression induces dentate gyrus degeneration. <i>Neurodegenerative Diseases</i> , 2010 , 7, 13-5	2.3	4
280	Glycogen synthase kinase-3 (GSK-3) inhibitors for the treatment of Alzheimer's disease. <i>Current Pharmaceutical Design</i> , 2010 , 16, 2790-8	3.3	71
279	Prevention of senescence progression in reversibly immortalized human ensheathing glia permits their survival after deimmortalization. <i>Molecular Therapy</i> , 2010 , 18, 394-403	11.7	22

(2009-2010)

278	Nondenaturing electrophoresis as a tool to investigate tubulin complexes. <i>Methods in Cell Biology</i> , 2010 , 95, 59-75	1.8	9
277	Differential gene expression analysis of human entorhinal cortex support a possible role of some extracellular matrix proteins in the onset of Alzheimer disease. <i>Neuroscience Letters</i> , 2010 , 468, 225-8	3.3	14
276	MAP1B binds to the NMDA receptor subunit NR3A and affects NR3A protein concentrations. <i>Neuroscience Letters</i> , 2010 , 475, 33-7	3.3	18
275	GSK3: a possible link between beta amyloid peptide and tau protein. <i>Experimental Neurology</i> , 2010 , 223, 322-5	5.7	2 00
274	Expression of the ghrelin and neurotensin systems is altered in the temporal lobe of Alzheimer's disease patients. <i>Journal of Alzheimerk Disease</i> , 2010 , 22, 819-28	4.3	71
273	Role of glycogen synthase kinase-3 in Alzheimer's disease pathogenesis and glycogen synthase kinase-3 inhibitors. <i>Expert Review of Neurotherapeutics</i> , 2010 , 10, 703-10	4.3	90
272	Tau protein role in sleep-wake cycle. <i>Journal of Alzheimerks Disease</i> , 2010 , 21, 411-21	4.3	33
271	Tau phosphorylation in hippocampus results in toxic gain-of-function. <i>Biochemical Society Transactions</i> , 2010 , 38, 977-80	5.1	21
270	Regulation of GSK3 isoforms by phosphatases PP1 and PP2A. <i>Molecular and Cellular Biochemistry</i> , 2010 , 344, 211-5	4.2	68
269	Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. <i>Neurobiology of Disease</i> , 2010 , 37, 622-9	7.5	87
268	Tau deficiency leads to the upregulation of BAF-57, a protein involved in neuron-specific gene repression. <i>FEBS Letters</i> , 2010 , 584, 2265-70	3.8	21
267	Reversibly immortalized human olfactory ensheathing glia from an elderly donor maintain neuroregenerative capacity. <i>Glia</i> , 2010 , 58, 546-58	9	22
266	Memory and neurogenesis in aging and Alzheimer's disease 2010 , 1, 30-6		7
265	Is tau a suitable therapeutical target in tauopathies?. World Journal of Biological Chemistry, 2010 , 1, 81-	43.8	4
264	The tau code. Frontiers in Aging Neuroscience, 2009, 1, 1	5.3	16
263	Binding of Hsp90 to tau promotes a conformational change and aggregation of tau protein. <i>Journal of Alzheimerks Disease</i> , 2009 , 17, 319-25	4.3	43
262	GSK3 inhibitors and disease. <i>Mini-Reviews in Medicinal Chemistry</i> , 2009 , 9, 1024-9	3.2	37
261	Altered Ca2+ dependence of synaptosomal plasma membrane Ca2+-ATPase in human brain affected by Alzheimer's disease. <i>FASEB Journal</i> , 2009 , 23, 1826-34	0.9	51

260	Function of tau protein in adult newborn neurons. FEBS Letters, 2009, 583, 3063-8	3.8	41
259	Calpain-mediated truncation of GSK-3 in post-mortem brain samples. <i>Journal of Neuroscience Research</i> , 2009 , 87, 1156-61	4.4	15
258	Hyperphosphorylated tau aggregates in the cortex and hippocampus of transgenic mice with mutant human FTDP-17 Tau and lacking the PARK2 gene. <i>Acta Neuropathologica</i> , 2009 , 117, 159-68	14.3	10
257	Tauan inhibitor of deacetylase HDAC6 function. <i>Journal of Neurochemistry</i> , 2009 , 109, 1756-66	6	143
256	The role of GSK3 in Alzheimer disease. <i>Brain Research Bulletin</i> , 2009 , 80, 248-50	3.9	59
255	Microtubule-associated protein 1b, a neuronal marker involved in odontoblast differentiation. <i>Journal of Endodontics</i> , 2009 , 35, 992-6	4.7	16
254	Tau aggregation followed by atomic force microscopy and surface plasmon resonance, and single molecule tau-tau interaction probed by atomic force spectroscopy. <i>Journal of Alzheimerks Disease</i> , 2009 , 18, 141-51	4.3	24
253	Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer's disease. <i>Journal of Alzheimerks Disease</i> , 2009 , 17, 773-86	4.3	90
252	Characteristics and consequences of muscarinic receptor activation by tau protein. <i>European Neuropsychopharmacology</i> , 2009 , 19, 708-17	1.2	72
251	Memantine inhibits calpain-mediated truncation of GSK-3 induced by NMDA: implications in Alzheimer's disease. <i>Journal of Alzheimerks Disease</i> , 2009 , 18, 843-8	4.3	15
250	Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer's disease. <i>International Journal of Experimental Pathology</i> , 2008 , 89, 81-90	2.8	85
249	The role of glycogen synthase kinase 3 in the early stages of Alzheimers' disease. <i>FEBS Letters</i> , 2008 , 582, 3848-54	3.8	61
248	Immunotherapy for neurological diseases. <i>Clinical Immunology</i> , 2008 , 128, 294-305	9	42
247	Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. <i>Molecular and Cellular Neurosciences</i> , 2008 , 37, 673-81	4.8	177
246	Memory and exploratory impairment in mice that lack the Park-2 gene and that over-express the human FTDP-17 mutant Tau. <i>Behavioural Brain Research</i> , 2008 , 189, 350-6	3.4	9
245	Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination. <i>Developmental Neuroscience</i> , 2008 , 30, 200-10	2.2	31
244	Binding of tau protein to the ends of ex vivo paired helical filaments. <i>Journal of Alzheimerks Disease</i> , 2008 , 13, 177-85	4.3	1
243	Coenzyme q induces tau aggregation, tau filaments, and Hirano bodies. <i>Journal of Neuropathology and Experimental Neurology</i> , 2008 , 67, 428-34	3.1	10

(2007-2008)

242	Park2-null/tau transgenic mice reveal a functional relationship between parkin and tau. <i>Journal of Alzheimerks Disease</i> , 2008 , 13, 161-72	4.3	14
241	Tau as a molecular marker of development, aging and neurodegenerative disorders. <i>Current Aging Science</i> , 2008 , 1, 56-61	2.2	12
240	Tau aggregates and tau pathology. <i>Journal of Alzheimerks Disease</i> , 2008 , 14, 449-52	4.3	36
239	Phosphorylated tau in neuritic plaques of APP(sw)/Tau (vlw) transgenic mice and Alzheimer disease. <i>Acta Neuropathologica</i> , 2008 , 116, 409-18	14.3	17
238	Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments. <i>Journal of Neuroscience Research</i> , 2008 , 86, 1343-52	4.4	62
237	Effect of cortistatin on tau phosphorylation at Ser262 site. <i>Journal of Neuroscience Research</i> , 2008 , 86, 2462-75	4.4	9
236	Co-expression of FTDP-17 Human Tau and GSK-3[(or APPSW) in Transgenic Mice: Induction of Tau Polymerization and Neurodegeneration 2008 , 337-342		
235	Role of polyglycine repeats in the regulation of glycogen synthase kinase activity. <i>Protein and Peptide Letters</i> , 2008 , 15, 586-9	1.9	1
234	A mouse model to study tau pathology related with tau phosphorylation and assembly. <i>Journal of the Neurological Sciences</i> , 2007 , 257, 250-4	3.2	7
233	Tramiprosate, a drug of potential interest for the treatment of Alzheimer's disease, promotes an abnormal aggregation of tau. <i>Molecular Neurodegeneration</i> , 2007 , 2, 17	19	54
232	Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. <i>EMBO Journal</i> , 2007 , 26, 2743-54	13	54
231	Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. <i>European Journal of Neuroscience</i> , 2007 , 25, 81-6	3.5	268
230	The role of the VQIVYK peptide in tau protein phosphorylation. <i>Journal of Neurochemistry</i> , 2007 , 103, 1447-60	6	19
229	Neuronal disorders: introduction. <i>Cellular and Molecular Life Sciences</i> , 2007 , 64, 2191-2193	10.3	
228	Tauopathies. Cellular and Molecular Life Sciences, 2007, 64, 2219-33	10.3	226
227	N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation. <i>Journal of Biological Chemistry</i> , 2007 , 282, 22406-13	5.4	99
226	BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons. <i>Neurochemistry International</i> , 2007 , 50, 491-8	4.4	52
225	Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-beta-peptide aggregation. <i>Neuroscience Letters</i> , 2007 , 429, 91-4	3.3	44

224	Treating the lesions, not the disease. American Journal of Pathology, 2007, 170, 1457-9	5.8	12
223	GSK-3 inhibitors for Alzheimer's disease. Expert Review of Neurotherapeutics, 2007, 7, 1527-33	4.3	64
222	Cortistatin as a therapeutic target in inflammation. Expert Opinion on Therapeutic Targets, 2007, 11, 1-9	6.4	8
221	Sodium tungstate decreases the phosphorylation of tau through GSK3 inactivation. <i>Journal of Neuroscience Research</i> , 2006 , 83, 264-73	4.4	25
220	The quest to repair the damaged spinal cord. Recent Patents on CNS Drug Discovery, 2006, 1, 55-63		18
219	Inhibition of GSK3 dependent tau phosphorylation by metals. Current Alzheimer Research, 2006, 3, 123-7	' 3	21
218	Acetylcholine receptors and tau phosphorylation. Current Molecular Medicine, 2006, 6, 423-8	2.5	26
217	Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. <i>Molecular Biology of the Cell</i> , 2006 , 17, 3435-45	3.5	74
216	Full reversal of Alzheimer's disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. <i>Journal of Neuroscience</i> , 2006 , 26, 5083-90	6.6	217
215	A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. <i>Molecular Therapy</i> , 2006 , 13, 598-608	11.7	47
214	Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. <i>Journal of Neuroscience</i> , 2006 , 26, 5347-59	6.6	85
213	Extracellular tau is toxic to neuronal cells. <i>FEBS Letters</i> , 2006 , 580, 4842-50	3.8	169
212	Tau phosphorylation and aggregation in Alzheimer's disease pathology. FEBS Letters, 2006, 580, 2922-7	3.8	182
211	In vitro tau fibrillization: mapping protein regions. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2006 , 1762, 683-92	6.9	16
210	Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. <i>Neurobiology of Aging</i> , 2006 , 27, 1258-68	5.6	96
209	gamma-cleavage-independent functions of presenilin, nicastrin, and Aph-1 regulate cell-junction organization and prevent tau toxicity in vivo. <i>Neuron</i> , 2006 , 50, 359-75	13.9	20
208	Tau protein, the main component of paired helical filaments. <i>Journal of Alzheimerks Disease</i> , 2006 , 9, 171	 ≠3	15
207	Role of MAP1B in axonal retrograde transport of mitochondria. <i>Biochemical Journal</i> , 2006 , 397, 53-9	3.8	54

(2005-2006)

206	Characteristics of the binding of thioflavin S to tau paired helical filaments. <i>Journal of Alzheimerks Disease</i> , 2006 , 9, 279-85	4.3	35
205	Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangles do not revert. <i>Journal of Neurochemistry</i> , 2006 , 99, 1445-55	6	169
204	European Alzheimer disease funding. <i>Nature Medicine</i> , 2006 , 12, 776-7	50.5	
203	A meeting to remember: meeting on memory and related disorders. <i>EMBO Reports</i> , 2006 , 7, 768-73	6.5	2
202	Effect of acetylcholine on tau phosphorylation in human neuroblastoma cells. <i>Journal of Molecular Neuroscience</i> , 2006 , 30, 185-8	3.3	3
201	The anti-inflammatory and cholinesterase inhibitor bifunctional compound IBU-PO protects from beta-amyloid neurotoxicity by acting on Wnt signaling components. <i>Neurobiology of Disease</i> , 2005 , 18, 176-83	7.5	34
200	Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. <i>Neurobiology of Disease</i> , 2005 , 20, 392-400	7.5	125
199	Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. <i>Neurobiology of Disease</i> , 2005 , 20, 814-22	7.5	124
198	Tau modifiers as therapeutic targets for Alzheimer's disease. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2005 , 1739, 211-5	6.9	9
197	Effect of quinones on microtubule polymerization: a link between oxidative stress and cytoskeletal alterations in Alzheimer's disease. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2005 , 1740, 472-80	6.9	36
196	Phosphorylation modulates the alpha-helical structure and polymerization of a peptide from the third tau microtubule-binding repeat. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2005 , 1721, 16-26	54	20
195	Chronological primacy of oxidative stress in Alzheimer disease. <i>Neurobiology of Aging</i> , 2005 , 26, 579-80	5.6	40
194	Characterization of a double (amyloid precursor protein-tau) transgenic: tau phosphorylation and aggregation. <i>Neuroscience</i> , 2005 , 130, 339-47	3.9	64
193	Role for the alpha-helix in aberrant protein aggregation. <i>Biochemistry</i> , 2005 , 44, 149-56	3.2	38
192	Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. <i>Biochemical Journal</i> , 2005 , 389, 333-41	3.8	33
191	Estradiol prevents neural tau hyperphosphorylation characteristic of Alzheimer's disease. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1052, 210-24	6.5	102
190	Oxidative imbalance in Alzheimer's disease. <i>Molecular Neurobiology</i> , 2005 , 31, 205-17	6.2	97
189	Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. <i>Free Radical Biology and Medicine</i> , 2005 , 38, 746-54	7.8	102

188	Characterization of Alzheimer paired helical filaments by electron microscopy. <i>Microscopy Research and Technique</i> , 2005 , 67, 121-5	2.8	5
187	End binding protein-1 (EB1) complements microtubule-associated protein-1B during axonogenesis. <i>Journal of Neuroscience Research</i> , 2005 , 80, 350-9	4.4	31
186	Neurotoxic dopamine quinone facilitates the assembly of tau into fibrillar polymers. <i>Molecular and Cellular Biochemistry</i> , 2005 , 278, 203-12	4.2	28
185	A role of MAP1B in Reelin-dependent neuronal migration. <i>Cerebral Cortex</i> , 2005 , 15, 1134-45	5.1	92
184	A new mutation of the tau gene, G303V, in early-onset familial progressive supranuclear palsy. <i>Archives of Neurology</i> , 2005 , 62, 1444-50		81
183	Assembly in vitro of tau protein and its implications in Alzheimer's disease. <i>Current Alzheimer Research</i> , 2004 , 1, 97-101	3	21
182	Heme catabolism and heme oxygenase in neurodegenerative disease. <i>Antioxidants and Redox Signaling</i> , 2004 , 6, 888-94	8.4	32
181	Neuronal microtubule-associated protein 2D is a dual a-kinase anchoring protein expressed in rat ovarian granulosa cells. <i>Journal of Biological Chemistry</i> , 2004 , 279, 27621-32	5.4	17
180	Biochemical, ultrastructural, and reversibility studies on huntingtin filaments isolated from mouse and human brain. <i>Journal of Neuroscience</i> , 2004 , 24, 9361-71	6.6	47
179	Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35. Implications for Alzheimer's disease. <i>Journal of Biological Chemistry</i> , 2004 , 279, 3801-6	5.4	103
178	Glycogen synthase kinase 3: a drug target for CNS therapies. Journal of Neurochemistry, 2004, 89, 1313-	- 7 6	355
177	MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance. <i>Current Biology</i> , 2004 , 14, 840-50	6.3	106
176	Expression of an altered form of tau in Sf9 insect cells results in the assembly of polymers resembling Alzheimer's paired helical filaments. <i>Brain Research</i> , 2004 , 1007, 57-64	3.7	13
175	Enhanced induction of the immunoproteasome by interferon gamma in neurons expressing mutant Huntingtin. <i>Neurotoxicity Research</i> , 2004 , 6, 463-8	4.3	36
174	Tau in neurodegenerative diseases: tau phosphorylation and assembly. <i>Neurotoxicity Research</i> , 2004 , 6, 477-82	4.3	39
173	Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. <i>Journal of Neurobiology</i> , 2004 , 58, 48-59		87
172	Quinones facilitate the self-assembly of the phosphorylated tubulin binding region of tau into fibrillar polymers. <i>Biochemistry</i> , 2004 , 43, 2888-97	3.2	49
171	Testing the ubiquitin-proteasome hypothesis of neurodegeneration in vivo. <i>Trends in Neurosciences</i> , 2004 , 27, 66-9	13.3	33

(2002-2004)

170	M1 muscarinic receptor activation protects neurons from beta-amyloid toxicity. A role for Wnt signaling pathway. <i>Neurobiology of Disease</i> , 2004 , 17, 337-48	7.5	68
169	Zeta 14-3-3 protein favours the formation of human tau fibrillar polymers. <i>Neuroscience Letters</i> , 2004 , 357, 143-6	3.3	53
168	Role of tau protein in both physiological and pathological conditions. <i>Physiological Reviews</i> , 2004 , 84, 361-84	47.9	641
167	Tau phosphorylation and assembly. Acta Neurobiologiae Experimentalis, 2004, 64, 33-9	1	11
166	The influence of aging in one tauopathy: Alzheimer's disease. <i>Archivum Immunologiae Et Therapiae Experimentalis</i> , 2004 , 52, 410-3	4	5
165	Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. Journal of Alzheimerks Disease, 2003, 5, 301-8	4.3	159
164	Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. <i>Biochemical Journal</i> , 2003 , 372, 129-36	3.8	100
163	Neuronal induction of the immunoproteasome in Huntington's disease. <i>Journal of Neuroscience</i> , 2003 , 23, 11653-61	6.6	218
162	Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. <i>Journal of Neuroscience Research</i> , 2003 , 71, 863-70	4.4	100
161	High level of amyloid precursor protein expression in neurite-promoting olfactory ensheathing glia (OEG) and OEG-derived cell lines. <i>Journal of Neuroscience Research</i> , 2003 , 71, 871-81	4.4	16
160	Immortalized olfactory ensheathing glia promote axonal regeneration of rat retinal ganglion neurons. <i>Journal of Neurochemistry</i> , 2003 , 85, 861-71	6	37
159	GSK-3 dependent phosphoepitopes recognized by PHF-1 and AT-8 antibodies are present in different tau isoforms. <i>Neurobiology of Aging</i> , 2003 , 24, 1087-94	5.6	36
158	Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation. <i>American Journal of Pathology</i> , 2003 , 162, 1623-7	5.8	252
157	Inhibition by Aplidine of the aggregation of the prion peptide PrP 106-126 into beta-sheet fibrils. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2003 , 1639, 133-9	6.9	15
156	Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. <i>Journal of Biological Chemistry</i> , 2003 , 278, 45937-45	5.4	393
155	Transgenic mouse models with tau pathology to test therapeutic agents for Alzheimer's disease. <i>Mini-Reviews in Medicinal Chemistry</i> , 2002 , 2, 51-8	3.2	8
154	Glycogen synthase kinase-3 is activated in neuronal cells by Galpha12 and Galpha13 by Rho-independent and Rho-dependent mechanisms. <i>Journal of Neuroscience</i> , 2002 , 22, 6863-75	6.6	71
153	Progressive supranuclear palsy and tau hyperphosphorylation in a patient with a C212Y parkin mutation. <i>Journal of Alzheimerks Disease</i> , 2002 , 4, 399-404	4.3	33

152	Olfactory Ensheathing Glia: Drivers of Axonal Regeneration in the Central Nervous System?. <i>Journal of Biomedicine and Biotechnology</i> , 2002 , 2, 37-43		37
151	Sulfo-glycosaminoglycan content affects PHF-tau solubility and allows the identification of different types of PHFs. <i>Brain Research</i> , 2002 , 935, 65-72	3.7	17
150	Microtubule-associated protein 1B is involved in the initial stages of axonogenesis in peripheral nervous system cultured neurons. <i>Brain Research</i> , 2002 , 943, 56-67	3.7	53
149	Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases?. <i>Free Radical Biology and Medicine</i> , 2002 , 33, 1475-9	7.8	222
148	Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. <i>Journal of Neuroscience Research</i> , 2002 , 67, 713-9	4.4	58
147	Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer's disease. <i>Bipolar Disorders</i> , 2002 , 4, 153-65	3.8	92
146	Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. <i>Journal of Neurochemistry</i> , 2002 , 83, 1529-33	6	291
145	Nuclear localization of N-terminal mutant huntingtin is cell cycle dependent. <i>European Journal of Neuroscience</i> , 2002 , 16, 355-9	3.5	19
144	Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. <i>FEBS Journal</i> , 2002 , 269, 1484-9		76
143	Tau function and dysfunction in neurons: its role in neurodegenerative disorders. <i>Molecular Neurobiology</i> , 2002 , 25, 213-31	6.2	43
142	Highly efficient and specific gene transfer to Purkinje cells in vivo using a herpes simplex virus I amplicon. <i>Human Gene Therapy</i> , 2002 , 13, 665-74	4.8	26
141	High molecular weight neurofilament proteins are physiological substrates of adduction by the lipid peroxidation product hydroxynonenal. <i>Journal of Biological Chemistry</i> , 2002 , 277, 4644-8	5.4	102
140	A two-hybrid screening of human Tau protein: interactions with Alu-derived domain. <i>NeuroReport</i> , 2002 , 13, 343-9	1.7	9
139	Alpha-helix structure in Alzheimer's disease aggregates of tau-protein. <i>Biochemistry</i> , 2002 , 41, 7150-5	3.2	100
138	Ephrin-B1 promotes dendrite outgrowth on cerebellar granule neurons. <i>Molecular and Cellular Neurosciences</i> , 2002 , 20, 429-46	4.8	18
137	Three-dimensional structure of human tubulin chaperone cofactor A. <i>Journal of Molecular Biology</i> , 2002 , 318, 1139-49	6.5	22
136	P24, a glycogen synthase kinase 3 (GSK 3) inhibitor. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2002 , 1586, 113-22	6.9	24
135	Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. <i>Comparative Biochemistry and Physiology Part - C:</i> Toxicology and Pharmacology, 2002, 133, 507-13	3.2	45

134	Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases. <i>Peptides</i> , 2002 , 23, 1323-32	3.8	111
133	The p38 pathway is activated in Pick disease and progressive supranuclear palsy: a mechanistic link between mitogenic pathways, oxidative stress, and tau. <i>Neurobiology of Aging</i> , 2002 , 23, 855-9	5.6	38
132	Phosphorylation, Microtubule Binding and Aggregation of Tau Protein in Alzheimer's Disease 2001 , 601	1-607	
131	Evidence for the role of MAP1B in axon formation. <i>Molecular Biology of the Cell</i> , 2001 , 12, 2087-98	3.5	121
130	Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. <i>Journal of Structural Biology</i> , 2001 , 135, 219-29	3.4	116
129	Distribution of the phosphorylated form of microtubule associated protein 1B in the fish visual system during optic nerve regeneration. <i>Brain Research Bulletin</i> , 2001 , 56, 131-7	3.9	7
128	Characterization by atomic force microscopy and cryoelectron microscopy of tau polymers assembled in Alzheimer's disease. <i>Journal of Alzheimerks Disease</i> , 2001 , 3, 443-451	4.3	14
127	Modifications of tau protein during neuronal cell death. <i>Journal of Alzheimerks Disease</i> , 2001 , 3, 563-575	4.3	10
126	Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. <i>Journal of Neuroscience</i> , 2001 , 21, 8772-81	6.6	136
125	Biochemistry of neurodegeneration. <i>Science</i> , 2001 , 291, 595-7	33.3	9
125	Biochemistry of neurodegeneration. <i>Science</i> , 2001 , 291, 595-7 In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. <i>Journal of Neurochemistry</i> , 2000 , 75, 1234-41	33·3 6	9
	In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by		
124	In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. <i>Journal of Neurochemistry</i> , 2000 , 75, 1234-41 GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents	6	145
124	In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. <i>Journal of Neurochemistry</i> , 2000 , 75, 1234-41 GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. <i>European Journal of Cell Biology</i> , 2000 , 79, 252-60 Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by	6.1	145 77
124 123 122	In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. <i>Journal of Neurochemistry</i> , 2000 , 75, 1234-41 GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. <i>European Journal of Cell Biology</i> , 2000 , 79, 252-60 Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. <i>Brain Research</i> , 2000 , 853, 299-309 Tau dephosphorylation at tau-1 site correlates with its association to cell membrane.	6.1	145 77 70
124 123 122	In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. <i>Journal of Neurochemistry</i> , 2000 , 75, 1234-41 GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. <i>European Journal of Cell Biology</i> , 2000 , 79, 252-60 Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. <i>Brain Research</i> , 2000 , 853, 299-309 Tau dephosphorylation at tau-1 site correlates with its association to cell membrane. <i>Neurochemical Research</i> , 2000 , 25, 43-50 Role of the PI3K regulatory subunit in the control of actin organization and cell migration. <i>Journal</i>	6 6.1 3.7 4.6	145 77 70 82
124 123 122 121	In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. <i>Journal of Neurochemistry</i> , 2000 , 75, 1234-41 GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. <i>European Journal of Cell Biology</i> , 2000 , 79, 252-60 Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. <i>Brain Research</i> , 2000 , 853, 299-309 Tau dephosphorylation at tau-1 site correlates with its association to cell membrane. <i>Neurochemical Research</i> , 2000 , 25, 43-50 Role of the PI3K regulatory subunit in the control of actin organization and cell migration. <i>Journal of Cell Biology</i> , 2000 , 151, 249-62 Perinatal lethality of microtubule-associated protein 1B-deficient mice expressing alternative	6 6.1 3.7 4.6 7.3	145 77 70 82 198

116	Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. <i>Neuron</i> , 2000 , 25, 425-35	13.9	680
115	Tau aggregation into fibrillar polymers: taupathies. <i>FEBS Letters</i> , 2000 , 476, 89-92	3.8	57
114	Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. <i>FEBS Letters</i> , 2000 , 486, 270-4	3.8	76
113	Glycogen Synthase Kinase-3 Modulates Neurite Outgrowth in Cultured Neurons: Possible Implications for Neurite Pathology in Alzheimer's Disease. <i>Journal of Alzheimerks Disease</i> , 1999 , 1, 361-3	78 ³	50
112	The neurite retraction induced by lysophosphatidic acid increases Alzheimer's disease-like Tau phosphorylation. <i>Journal of Biological Chemistry</i> , 1999 , 274, 37046-52	5.4	132
111	Distribution of CK2, its substrate MAP1B and phosphatases in neuronal cells. <i>Molecular and Cellular Biochemistry</i> , 1999 , 191, 201-205	4.2	25
110	Two modes of microtubule-associated protein 1B phosphorylation are differentially regulated during peripheral nerve regeneration. <i>Brain Research</i> , 1999 , 815, 213-26	3.7	18
109	OP18/stathmin binds near the C-terminus of tubulin and facilitates GTP binding. <i>FEBS Journal</i> , 1999 , 262, 557-62		7
108	Downregulation of glycogen synthase kinase-3beta (GSK-3beta) protein expression during neuroblastoma IMR-32 cell differentiation. <i>Journal of Neuroscience Research</i> , 1999 , 55, 278-85	4.4	11
107	Lithium induces morphological differentiation of mouse neuroblastoma cells. <i>Journal of Neuroscience Research</i> , 1999 , 57, 261-70	4.4	19
106	The expression of casein kinase 2alpha' and phosphatase 2A activity. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 1999 , 1449, 150-6	4.9	8
105	Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations. <i>FEBS Letters</i> , 1999 , 446, 199-202	3.8	90
104	Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. <i>FEBS Letters</i> , 1999 , 453, 260-4	3.8	206
103	Distribution and characteristics of betall tubulin-enriched microtubules in interphase cells. <i>Experimental Cell Research</i> , 1999 , 248, 372-80	4.2	23
102	Distribution of CK2, its substrate MAP1B and phosphatases in neuronal cells 1999 , 201-205		О
101	Phosphorylation of stathmin modulates its function as a microtubule depolymerizing factor. <i>Molecular and Cellular Biochemistry</i> , 1998 , 183, 201-9	4.2	26
100	Implication of cyclin-dependent kinases and glycogen synthase kinase 3 in the phosphorylation of microtubule-associated protein 1B in developing neuronal cells. <i>Journal of Neuroscience Research</i> , 1998 , 52, 445-52	4.4	39
99	Olfactory ensheathing glia: properties and function. <i>Brain Research Bulletin</i> , 1998 , 46, 175-87	3.9	331

(1995-1998)

98	Protein kinase C-dependent in vivo phosphorylation of prourokinase leads to the formation of a receptor competitive antagonist. <i>Journal of Biological Chemistry</i> , 1998 , 273, 27734-40	5.4	14
97	Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. <i>Journal of Neuroscience</i> , 1998 , 18, 3803-15	6.6	616
96	Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment. <i>Biochemical Journal</i> , 1998 , 335 (Pt 2), 369-74	3.8	58
95	Characterization of tubulin isotype-specific antibodies by electrophoretic mobility shift assay. <i>BioTechniques</i> , 1998 , 25, 940-2	2.5	2
94	The zeta isozyme of protein kinase C binds to tubulin through the pseudosubstrate domain. <i>Experimental Cell Research</i> , 1997 , 230, 1-8	4.2	27
93	Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. <i>FEBS Letters</i> , 1997 , 411, 183-8	3.8	240
92	A putative beta-tubulin phosphate-binding motif is involved in lateral microtubule protofilament interactions. <i>FEBS Journal</i> , 1997 , 248, 840-7		1
91	NMDA-glutamate receptors regulate phosphorylation of dendritic cytoskeletal proteins in the hippocampus. <i>Brain Research</i> , 1997 , 765, 141-8	3.7	24
90	Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction. <i>Journal of Neurochemistry</i> , 1996 , 67, 1183-90	6	283
89	Characterization of microtubule-associated protein MAP1B: phosphorylation state, light chains, and binding to microtubules. <i>Biochemistry</i> , 1996 , 35, 3016-23	3.2	36
88	Protein kinases involved in the phosphorylation of human tau protein in transfected COS-1 cells. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 1996 , 1316, 43-50	6.9	7
87	The antitumoral compound Kahalalide F acts on cell lysosomes. <i>Cancer Letters</i> , 1996 , 99, 43-50	9.9	79
86	The beta-tubulin monomer release factor (p14) has homology with a region of the DnaJ protein. <i>FEBS Letters</i> , 1996 , 397, 283-9	3.8	25
85	The in vitro formation of recombinant tau polymers: effect of phosphorylation and glycation. <i>Molecular and Chemical Neuropathology</i> , 1996 , 27, 249-58		28
84	Phosphorylation and dephosphorylation in the proline-rich C-terminal domain of microtubule-associated protein 2. <i>FEBS Journal</i> , 1996 , 241, 765-71		44
83	Glycogen synthase kinase 3 phosphorylation of different residues in the presence of different factors: analysis on tau protein. <i>Molecular and Cellular Biochemistry</i> , 1996 , 165, 47-54	4.2	25
82	Involvement of gamma and beta actin isoforms in mouse neuroblastoma differentiation. <i>European Journal of Neuroscience</i> , 1996 , 8, 1441-51	3.5	14
81	Tau protein from Alzheimer's disease patients is glycated at its tubulin-binding domain. <i>Journal of Neurochemistry</i> , 1995 , 65, 1658-64	6	80

80	Control of microtubule polymerization and stability. Cytoskeleton: A Multi-Volume Treatise, 1995, 1, 47-8	35	1
79	Glycogen synthase kinase 3 phosphorylates recombinant human tau protein at serine-262 in the presence of heparin (or tubulin). <i>FEBS Letters</i> , 1995 , 372, 65-8	3.8	33
78	Characterization of microtubule-associated protein phosphoisoforms present in isolated growth cones. <i>Developmental Brain Research</i> , 1995 , 89, 47-55		23
77	Beta-tubulin folding is modulated by the isotype-specific carboxy-terminal domain. <i>Journal of Molecular Biology</i> , 1995 , 246, 628-36	6.5	10
76	An increase in phosphorylation of microtubule-associated protein 2 accompanies dendrite extension during the differentiation of cultured hippocampal neurones. <i>FEBS Journal</i> , 1995 , 227, 68-77		29
75	Depletion of catalytic and regulatory subunits of protein kinase CK2 by antisense oligonucleotide treatment of neuroblastoma cells. <i>Cellular and Molecular Neurobiology</i> , 1994 , 14, 407-14	4.6	14
74	Role of phosphorylated MAPIB in neuritogenesis. Cell Biology International, 1994, 18, 309-14	4.5	13
73	Microtubule-associated protein MAP1B showing a fetal phosphorylation pattern is present in sites of neurofibrillary degeneration in brains of Alzheimer's disease patients. <i>Molecular Brain Research</i> , 1994 , 26, 113-22		60
72	Tissue-type plasminogen activator (tPA) is the main plasminogen activator associated with isolated rat nerve growth cones. <i>Neuroscience Letters</i> , 1994 , 180, 123-6	3.3	25
71	Dephosphorylation of tau protein from Alzheimer's disease patients. <i>Neuroscience Letters</i> , 1994 , 165, 175-8	3.3	13
7º	A Possible Mechanism for the Stimulation of Cell DNA Synthesis by Viral Infection 1994 , 149-151		
69	MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. <i>NeuroReport</i> , 1993 , 4, 419-22	1.7	40
68	High external potassium induces an increase in the phosphorylation of the cytoskeletal protein MAP2 in rat hippocampal slices. <i>European Journal of Neuroscience</i> , 1993 , 5, 818-24	3.5	19
67	Heterogeneity in the phosphorylation of microtubule-associated protein MAP1B during rat brain development. <i>Journal of Neurochemistry</i> , 1993 , 61, 961-72	6	91
66	Rapid dephosphorylation of microtubule-associated protein 2 in the rat brain hippocampus after pentylenetetrazole-induced seizures. <i>FEBS Journal</i> , 1993 , 215, 181-7		7
65	Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B. <i>FEBS Letters</i> , 1993 , 330, 85-9	3.8	47
64	Role of the carboxy terminal region of beta tubulin on microtubule dynamics through its interaction with the GTP phosphate binding region. <i>FEBS Letters</i> , 1993 , 325, 173-6	3.8	11
63	Microtubule functions. <i>Life Sciences</i> , 1992 , 50, 327-34	6.8	71

(1988-1991)

62	Tau-related protein present in paired helical filaments has a decreased tubulin binding capacity as compared with microtubule-associated protein tau. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 1991 , 1096, 197-204	6.9	19
61	MAP-1 and MAP-2 binding sites at the C-terminus of beta-tubulin. Studies with synthetic tubulin peptides. <i>Biochemistry</i> , 1991 , 30, 4362-6	3.2	66
60	Differential effects of tumor necrosis factor on the growth and differentiation of neuroblastoma and glioma cells. <i>Experimental Cell Research</i> , 1991 , 194, 161-4	4.2	24
59	Phosphorylation of microtubule proteins in rat brain at different developmental stages: comparison with that found in neuronal cultures. <i>Journal of Neurochemistry</i> , 1990 , 54, 211-22	6	71
58	Microtubule dynamics. FASEB Journal, 1990 , 4, 3284-90	0.9	61
57	Aluminum induces the in vitro aggregation of bovine brain cytoskeletal proteins. <i>Neuroscience Letters</i> , 1990 , 110, 221-6	3.3	42
56	Common antigenic determinants of the tubulin binding domains of the microtubule-associated proteins MAP-2 and tau. <i>BBA - Proteins and Proteomics</i> , 1990 , 1040, 382-90		8
55	Subcellular localization of iodinated thyroid tubulin. <i>Bioscience Reports</i> , 1989 , 9, 375-82	4.1	
54	Quantitation of microtubule-associated protein MAP-1B in brain and other tissues. <i>International Journal of Biochemistry & Cell Biology</i> , 1989 , 21, 723-30		3
53	Sodium butyrate induces major morphological changes in C6 glioma cells that are correlated with increased synthesis of a spectrin-like protein. <i>Developmental Brain Research</i> , 1989 , 45, 291-5		10
52	A discrete repeated sequence defines a tubulin binding domain on microtubule-associated protein tau. <i>Archives of Biochemistry and Biophysics</i> , 1989 , 275, 568-79	4.1	65
51	Detection of tubulin-binding proteins by an overlay assay. <i>Analytical Biochemistry</i> , 1988 , 175, 91-5	3.1	18
50	Differential phosphorylation of microtubule proteins by ATP and GTP. <i>Molecular and Cellular Biochemistry</i> , 1988 , 79, 73-9	4.2	8
49	A modified form of microtubule-associated tau protein is the main component of paired helical filaments. <i>Biochemical and Biophysical Research Communications</i> , 1988 , 154, 660-7	3.4	38
48	Tau factor polymers are similar to paired helical filaments of Alzheimer's disease. <i>FEBS Letters</i> , 1988 , 236, 150-4	3.8	43
47	Triiodothyronine (T3) induces neurite formation and increases synthesis of a protein related to MAP 1B in cultured cells of neuronal origin. <i>Developmental Brain Research</i> , 1988 , 466, 141-8		23
46	Iodination of proteins on nitrocellulose blotting paper. <i>Journal of Proteomics</i> , 1988 , 16, 17-25		1
45	Microtubule-associated protein, MAP2, is a calcium-binding protein. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1988 , 965, 195-201	4	14

44	In vitro conditions for the self-polymerization of the microtubule-associated protein, tau factor. Journal of Biochemistry, 1987 , 102, 1415-21	3.1	38
43	Regulatory aspects of the colchicine interactions with tubulin. <i>Molecular and Cellular Biochemistry</i> , 1987 , 73, 29-36	4.2	5
42	Microtubule-associated proteins present in different developmental stages of Drosophila melanogaster. <i>Journal of Cellular Biochemistry</i> , 1987 , 35, 83-92	4.7	9
41	Localization of the phosphorylation sites for different kinases in the microtubule-associated protein MAP2. <i>Journal of Neurochemistry</i> , 1987 , 48, 84-93	6	36
40	Location of the regions recognized by five commercial antibodies on the tubulin molecule. <i>Analytical Biochemistry</i> , 1986 , 159, 253-9	3.1	29
39	Phosphorylation of tubulin enhances its interaction with membranes. <i>Nature</i> , 1986 , 323, 827-8	50.4	51
38	Physicochemical characterization of the heat-stable microtubule-associated protein MAP2. <i>FEBS Journal</i> , 1986 , 154, 41-8		84
37	Characterization and structural aspects of the enhanced assembly of tubulin after removal of its carboxyl-terminal domain. <i>FEBS Journal</i> , 1986 , 156, 375-81		71
36	Characterization of a membrane-specific tubulin isoform by peptide mapping. <i>Bioscience Reports</i> , 1986 , 6, 913-9	4.1	2
35	The removal of the carboxy-terminal region of tubulin favors its vinblastine-induced aggregation into spiral-like structures. <i>Archives of Biochemistry and Biophysics</i> , 1986 , 249, 611-5	4.1	15
34	Self assembly of microtubule associated protein tau into filaments resembling those found in Alzheimer disease. <i>Biochemical and Biophysical Research Communications</i> , 1986 , 141, 790-6	3.4	101
33	A Trypanosoma cruzi monoclonal antibody that recognizes a superficial tubulin-like antigen. <i>Biochemical and Biophysical Research Communications</i> , 1986 , 139, 1176-83	3.4	10
32	The Carboxyterminal Region of Tubulin Regulates Its Assembly into Microtubules. <i>Annals of the New York Academy of Sciences</i> , 1986 , 466, 642-644	6.5	1
31	Proteolytic modification of tubulin. <i>Methods in Enzymology</i> , 1986 , 134, 179-90	1.7	19
30	Quantitation and characterization of tau factor in porcine tissues. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1986 , 881, 456-61	4	20
29	The interaction between a Na+-channel toxin and brain microtubule proteins in vitro. <i>Molecular Brain Research</i> , 1986 , 387, 43-51		
28	Interaction of an Na+-channel toxin, purified from scorpion venom, with micro tubule proteins in vitro. <i>Biochemical Society Transactions</i> , 1985 , 13, 1210-1211	5.1	1
27	Localization and characterization of tubulin-like proteins associated with brain mitochondria: the presence of a membrane-specific isoform. <i>Journal of Neurochemistry</i> , 1985 , 45, 490-6	6	31

26	Quantitative determination of tubulin and characterization of tubulin forms during development in Drosophila melanogaster. <i>Cell Differentiation</i> , 1985 , 16, 63-9		3
25	Localization of the tubulin binding site for tau protein. FEBS Journal, 1985, 153, 595-600		110
24	Structural and functional domains of tubulin. <i>BioEssays</i> , 1985 , 2, 165-169	4.1	24
23	A cell division mutant of Drosophila with a functionally abnormal spindle. <i>Cell</i> , 1985 , 41, 907-12	56.2	76
22	Homogeneity of lung tubulin isoforms during lung maturation. <i>Biochimie</i> , 1985 , 67, 1059-62	4.6	4
21	Antibodies to vimentin intermediate filaments in sera from patients with systemic lupus erythematosus. <i>Arthritis and Rheumatism</i> , 1984 , 27, 922-8		48
20	Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. <i>Biochemistry</i> , 1984 , 23, 4675-81	3.2	257
19	Characteristics of the binding of colchicine to porcine brain, cerebellum, pancreas, kidney, liver and spleen soluble protein: a comparative study. <i>Comparative Biochemistry and Physiology Part C:</i> Comparative Pharmacology, 1984 , 79, 107-11		1
18	Quantitation and characterization of the microtubule associated MAP2 in porcine tissues and its isolation from porcine (PK15) and human (HeLa) cell lines. <i>Biochemical and Biophysical Research Communications</i> , 1982 , 105, 1241-9	3.4	47
17	Comparative measurement by radioimmunoassay of the brain microtubule-associated protein MAP2. <i>Molecular and Cellular Biochemistry</i> , 1981 , 37, 185-9	4.2	11
16	Binding of microtubule protein to DNA and chromatin: possibility of simultaneous linkage of microtubule to nucleic and assembly of the microtubule structure. <i>Nucleic Acids Research</i> , 1981 , 9, 895-9	968.1	34
15	Microtubule-associated-protein MAP1 is not implicated in the polymerization of microtubules. <i>FEBS Journal</i> , 1980 , 112, 611-6		12
14	Effects of DNA on microtubule assembly. FEBS Journal, 1980, 105, 7-16		43
13	Incorporation of the high-molecular-weight microtubule-associated protein 2 (MAP2) into microtubules at steady state in vitro. <i>FEBS Journal</i> , 1980 , 105, 307-13		12
12	DNA polymerase activity, probably DNA polymerase alpha, remains associated to microtubules after successive polymerization cycles. <i>Biochemical and Biophysical Research Communications</i> , 1980 , 92, 237-46	3.4	3
11	Preferential binding of hog brain microtubule-associated proteins to mouse satellite versus bulk DNA preparations. <i>Nature</i> , 1978 , 273, 403-5	50.4	46
10	Interaction of contractile proteins with DNA. FEBS Journal, 1978, 83, 529-35		2
9	Binding of microtubule proteins to DNA: specificity of the interaction. FEBS Journal, 1978, 86, 473-9		39

8	The temperature-sensitive defect in SV40 group D mutants. Virology, 1976, 73, 89-95	3.6	18
7	Initiation of the transcription of phi29 DNA by Bacillus subtilis RNA polymerase. <i>Nucleic Acids and Protein Synthesis</i> , 1974 , 349, 320-7		5
6	Viral DNA synthesis in cells infected by temperature-sensitive mutants of simian virus 40. <i>Journal of Virology</i> , 1974 , 14, 116-24	6.6	141
5	Purification and properties of DNA-dependent RNA polymerase from Bacillus subtilis vegetative cells. <i>FEBS Journal</i> , 1971 , 21, 526-35		57
4	Subunit composition of B. subtilis RNA polymerase. <i>Nature</i> , 1970 , 226, 1244-5	50.4	31
3	GSK-3, a Key Player in Alzheimer's Disease105-124		
2	Animal Models with Modified Expression of GSK-3 for the Study of Its Physiology and of Its Implications in Human Pathologies203-219		
1	The IDH-Tau-EGFR triad defines diffuse glioma pathology by controlling mesenchymal differentiation and neo-vascular fitness		1