
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5405069/publications.pdf Version: 2024-02-01

IESúS ÂNUA DE CRADO

#	Article	IF	CITATIONS
1	Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nature Medicine, 2019, 25, 554-560.	15.2	1,070
2	Role of Tau Protein in Both Physiological and Pathological Conditions. Physiological Reviews, 2004, 84, 361-384.	13.1	787
3	Functional Recovery of Paraplegic Rats and Motor Axon Regeneration in Their Spinal Cords by Olfactory Ensheathing Glia. Neuron, 2000, 25, 425-435.	3.8	755
4	Long-Distance Axonal Regeneration in the Transected Adult Rat Spinal Cord Is Promoted by Olfactory Ensheathing Glia Transplants. Journal of Neuroscience, 1998, 18, 3803-3815.	1.7	675
5	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	9.4	502
6	Structural Insights and Biological Effects of Glycogen Synthase Kinase 3-specific Inhibitor AR-A014418. Journal of Biological Chemistry, 2003, 278, 45937-45945.	1.6	451
7	Glycogen synthase kinase 3: a drug target for CNS therapies. Journal of Neurochemistry, 2004, 89, 1313-1317.	2.1	398
8	GSK-3β, a pivotal kinase in Alzheimer disease. Frontiers in Molecular Neuroscience, 2014, 7, 46.	1.4	383
9	Olfactory ensheathing glia: properties and function. Brain Research Bulletin, 1998, 46, 175-187.	1.4	357
10	Polymerization of Ï,, into Filaments in the Presence of Heparin: The Minimal Sequence Required for Ï,, ―Ï,, Interaction. Journal of Neurochemistry, 1996, 67, 1183-1190.	2.1	352
11	Spatial learning deficit in transgenic mice that conditionally over-express GSK-3Î ² in the brain but do not form tau filaments. Journal of Neurochemistry, 2002, 83, 1529-1533.	2.1	323
12	Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. European Journal of Neuroscience, 2007, 25, 81-86.	1.2	300
13	Microtubule Reduction in Alzheimer's Disease and Aging Is Independent of Ï,, Filament Formation. American Journal of Pathology, 2003, 162, 1623-1627.	1.9	294
14	Lithium inhibits Alzheimer's diseaseâ€like tau protein phosphorylation in neurons. FEBS Letters, 1997, 411, 183-188.	1.3	285
15	Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. Biochemistry, 1984, 23, 4675-4681.	1.2	279
16	Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases?. Free Radical Biology and Medicine, 2002, 33, 1475-1479.	1.3	266
17	Tauopathies. Cellular and Molecular Life Sciences, 2007, 64, 2219-2233.	2.4	253
18	GSK3: A possible link between beta amyloid peptide and tau protein. Experimental Neurology, 2010, 223, 322-325.	2.0	240

#	Article	IF	CITATIONS
19	Lithium protects cultured neurons against βâ€amyloidâ€induced neurodegeneration. FEBS Letters, 1999, 453, 260-264.	1.3	239
20	Tau phosphorylation and aggregation in Alzheimer's disease pathology. FEBS Letters, 2006, 580, 2922-2927.	1.3	238
21	GSK3 and Tau: Two Convergence Points in Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S141-S144.	1.2	238
22	Full Reversal of Alzheimer's Disease-Like Phenotype in a Mouse Model with Conditional Overexpression of Glycogen Synthase Kinase-3. Journal of Neuroscience, 2006, 26, 5083-5090.	1.7	234
23	Neuronal Induction of the Immunoproteasome in Huntington's Disease. Journal of Neuroscience, 2003, 23, 11653-11661.	1.7	228
24	Role of the Pi3k Regulatory Subunit in the Control of Actin Organization and Cell Migration. Journal of Cell Biology, 2000, 151, 249-262.	2.3	222
25	A walk through tau therapeutic strategies. Acta Neuropathologica Communications, 2019, 7, 22.	2.4	211
26	Extracellular tau is toxic to neuronal cells. FEBS Letters, 2006, 580, 4842-4850.	1.3	208
27	Revisiting the role of acetylcholinesterase in Alzheimer's disease: cross-talk with P-tau and β-amyloid. Frontiers in Molecular Neuroscience, 2011, 4, 22.	1.4	208
28	Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Molecular and Cellular Neurosciences, 2008, 37, 673-681.	1.0	205
29	A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease. Frontiers in Immunology, 2020, 11, 456.	2.2	201
30	Chronic lithium administration to FTDP-17 tau and GSK-3? overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. Journal of Neurochemistry, 2006, 99, 1445-1455.	2.1	197
31	Viral DNA Synthesis in Cells Infected by Temperature-Sensitive Mutants of Simian Virus 40. Journal of Virology, 1974, 14, 116-124.	1.5	192
32	In Alzheimer's Disease, Heme Oxygenase Is Coincident with Alz50, an Epitope of Ï" Induced by 4-Hydroxy-2-Nonenal Modification. Journal of Neurochemistry, 2002, 75, 1234-1241.	2.1	189
33	Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nature Medicine, 2014, 20, 881-885.	15.2	183
34	Alzheimer's disease as an inflammatory disease. Biomolecular Concepts, 2017, 8, 37-43.	1.0	173
35	Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. Journal of Alzheimer's Disease, 2003, 5, 301-308.	1.2	172
36	Direct Evidence of Internalization of Tau byÂMicroglia In Vitro and InÂVivo. Journal of Alzheimer's Disease, 2016, 50, 77-87.	1.2	165

#	Article	IF	CITATIONS
37	Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiology of Disease, 2005, 20, 814-822.	2.1	163
38	Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathologica Communications, 2017, 5, 91.	2.4	157
39	The Neurite Retraction Induced by Lysophosphatidic Acid Increases Alzheimer's Disease-like Tau Phosphorylation. Journal of Biological Chemistry, 1999, 274, 37046-37052.	1.6	155
40	Proteasomal-Dependent Aggregate Reversal and Absence of Cell Death in a Conditional Mouse Model of Huntington's Disease. Journal of Neuroscience, 2001, 21, 8772-8781.	1.7	153
41	Tau – an inhibitor of deacetylase HDAC6 function. Journal of Neurochemistry, 2009, 109, 1756-1766.	2.1	153
42	Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiology of Disease, 2005, 20, 392-400.	2.1	152
43	Absence of CX3CR1 impairs the internalization of Tau by microglia. Molecular Neurodegeneration, 2017, 12, 59.	4.4	144
44	Tissue-nonspecific Alkaline Phosphatase Promotes the Neurotoxicity Effect of Extracellular Tau. Journal of Biological Chemistry, 2010, 285, 32539-32548.	1.6	138
45	"Tau Oligomers,―What We Know and What We Don't Know. Frontiers in Neurology, 2014, 5, 1.	1.1	138
46	Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Translational Psychiatry, 2016, 6, e718-e718.	2.4	137
47	Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles. FEBS Letters, 2012, 586, 47-54.	1.3	135
48	Review: Postchaperonin Tubulin Folding Cofactors and Their Role in Microtubule Dynamics. Journal of Structural Biology, 2001, 135, 219-229.	1.3	134
49	PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease. Human Molecular Genetics, 2016, 25, 792-806.	1.4	134
50	Evidence for the Role of MAP1B in Axon Formation. Molecular Biology of the Cell, 2001, 12, 2087-2098.	0.9	133
51	The role of extracellular Tau in the spreading of neurofibrillary pathology. Frontiers in Cellular Neuroscience, 2014, 8, 113.	1.8	130
52	The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Letters, 2000, 152, 23-29.	3.2	129
53	DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. Brain, 2013, 136, 3018-3027.	3.7	129
54	Oxidative Imbalance in Alzheimer's Disease. Molecular Neurobiology, 2005, 31, 205-218.	1.9	126

#	Article	IF	CITATIONS
55	Localization of the tubulin binding site for tau protein. FEBS Journal, 1985, 153, 595-600.	0.2	124
56	Estradiol Prevents Neural Tau Hyperphosphorylation Characteristic of Alzheimer's Disease. Annals of the New York Academy of Sciences, 2005, 1052, 210-224.	1.8	123
57	High Molecular Weight Neurofilament Proteins Are Physiological Substrates of Adduction by the Lipid Peroxidation Product Hydroxynonenal. Journal of Biological Chemistry, 2002, 277, 4644-4648.	1.6	122
58	Glycogen Synthase Kinase-3 Plays a Crucial Role in Tau Exon 10 Splicing and Intranuclear Distribution of SC35. Journal of Biological Chemistry, 2004, 279, 3801-3806.	1.6	122
59	Glycosaminoglycans and β-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides, 2002, 23, 1323-1332.	1.2	121
60	Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. Journal of Neuroscience Research, 2003, 71, 863-870.	1.3	121
61	MAP1B Is Required for Netrin 1 Signaling in Neuronal Migration and Axonal Guidance. Current Biology, 2004, 14, 840-850.	1.8	121
62	Role of Neuroinflammation in Adult Neurogenesis and Alzheimer Disease: Therapeutic Approaches. Mediators of Inflammation, 2013, 2013, 1-9.	1.4	121
63	N-terminal Cleavage of GSK-3 by Calpain. Journal of Biological Chemistry, 2007, 282, 22406-22413.	1.6	120
64	The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease. Brain, 2013, 136, 1913-1928.	3.7	117
65	Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radical Biology and Medicine, 2005, 38, 746-754.	1.3	115
66	Polymerization of tau peptides into fibrillar structures. The effect of FTDPâ€17 mutations. FEBS Letters, 1999, 446, 199-202.	1.3	113
67	Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer's disease. International Journal of Experimental Pathology, 2008, 89, 81-90.	0.6	113
68	Self assembly of microtubule associated protein tau into filaments resembling those found in alzheimer disease. Biochemical and Biophysical Research Communications, 1986, 141, 790-796.	1.0	111
69	A role of MAP1B in Reelin-dependent Neuronal Migration. Cerebral Cortex, 2005, 15, 1134-1145.	1.6	111
70	Role of glycogen synthase kinase-3 in Alzheimer's disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Review of Neurotherapeutics, 2010, 10, 703-710.	1.4	111
71	α-Helix Structure in Alzheimer's Disease Aggregates of Tau-Proteinâ€. Biochemistry, 2002, 41, 7150-7155.	1.2	110
72	Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. Biochemical Journal, 2003, 372, 129-136.	1.7	110

#	Article	IF	CITATIONS
73	Regulation of tau phosphorylation and protection against β-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer's disease. Bipolar Disorders, 2002, 4, 153-165.	1.1	109
74	Cooexpression of FTDP-17 tau and CSK- $3\hat{l}^2$ in transgenic mice induce tau polymerization and neurodegeneration. Neurobiology of Aging, 2006, 27, 1258-1268.	1.5	105
75	Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Letters, 2000, 486, 270-274.	1.3	102
76	Early Changes in Hippocampal Eph Receptors Precede the Onset of Memory Decline in Mouse Models of Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 17, 773-786.	1.2	101
77	New perspectives on the role of tau in Alzheimer's disease. Implications for therapy. Biochemical Pharmacology, 2014, 88, 540-547.	2.0	101
78	GSK-3 and Tau: A Key Duet in Alzheimer's Disease. Cells, 2021, 10, 721.	1.8	101
79	Tau dephosphorylation at tau-1 site correlates with its association to cell membrane. Neurochemical Research, 2000, 25, 43-50.	1.6	100
80	Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiology of Disease, 2010, 37, 622-629.	2.1	100
81	Ï" Protein from Alzheimer's Disease Patients Is Glycated at Its Tubulinâ€Binding Domain. Journal of Neurochemistry, 1995, 65, 1658-1664.	2.1	99
82	Deconstructing Mitochondrial Dysfunction in Alzheimer Disease. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-13.	1.9	98
83	Genes Associated with Adult Axon Regeneration Promoted by Olfactory Ensheathing Cells: A New Role for Matrix Metalloproteinase 2. Journal of Neuroscience, 2006, 26, 5347-5359.	1.7	97
84	A cell division mutant of drosophila with a functionally abnormal spindle. Cell, 1985, 41, 907-912.	13.5	95
85	The antitumoral compound Kahalalide F acts on cell lysosomes. Cancer Letters, 1996, 99, 43-50.	3.2	95
86	Slower Dynamics and Aged Mitochondria in Sporadic Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	1.9	95
87	Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. Journal of Neurobiology, 2004, 58, 48-59.	3.7	94
88	Physicochemical characterization of the heat-stable microtubule-associated protein MAP2. FEBS Journal, 1986, 154, 41-48.	0.2	92
89	Heterogeneity in the Phosphorylation of Micro tubule-Associated Protein MAP 1B During Rat Brair Development. Journal of Neurochemistry, 1993, 61, 961-972.	2.1	92
90	Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. FEBS Journal, 2002, 269, 1484-1489.	0.2	92

#	Article	IF	CITATIONS
91	The Role of Microglia in the Spread of Tau: Relevance for Tauopathies. Frontiers in Cellular Neuroscience, 2018, 12, 172.	1.8	92
92	Extracellular Monomeric Tau Is Internalized by Astrocytes. Frontiers in Neuroscience, 2019, 13, 442.	1.4	91
93	Expression of the Chrelin and Neurotensin Systems is Altered in the Temporal Lobe of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2010, 22, 819-828.	1.2	89
94	Tau Phosphorylation by GSK3 in Different Conditions. International Journal of Alzheimer's Disease, 2012, 2012, 1-7.	1.1	89
95	Microtubule-associated protein MAP1B showing a fetal phosphorylation pattern is present in sites of neurofibrillary degeneration in brains of Alzheimer's disease patients. Molecular Brain Research, 1994, 26, 113-122.	2.5	86
96	A New Mutation of the Ï,, Gene, G303V, in Early-Onset Familial Progressive Supranuclear Palsy. Archives of Neurology, 2005, 62, 1444.	4.9	86
97	Microtubule-associated Protein 1B (MAP1B) Is Required for Dendritic Spine Development and Synaptic Maturation. Journal of Biological Chemistry, 2011, 286, 40638-40648.	1.6	86
98	Tau Structures. Frontiers in Aging Neuroscience, 2016, 8, 262.	1.7	86
99	Mitophagy Failure in Fibroblasts and iPSC-Derived Neurons of Alzheimer's Disease-Associated Presenilin 1 Mutation. Frontiers in Molecular Neuroscience, 2017, 10, 291.	1.4	86
100	Characteristics and consequences of muscarinic receptor activation by tau protein. European Neuropsychopharmacology, 2009, 19, 708-717.	0.3	85
101	Microtubule functions. Life Sciences, 1992, 50, 327-334.	2.0	82
102	GSK3β-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. European Journal of Cell Biology, 2000, 79, 252-260.	1.6	82
103	Glycogen Synthase Kinase-3 (GSK-3) Inhibitors for the Treatment of Alzheimers Disease. Current Pharmaceutical Design, 2010, 16, 2790-2798.	0.9	80
104	MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells. EMBO Journal, 2013, 32, 1293-1306.	3.5	80
105	Lymphocyte Chemotaxis Is Regulated by Histone Deacetylase 6, Independently of Its Deacetylase Activity. Molecular Biology of the Cell, 2006, 17, 3435-3445.	0.9	79
106	MAP1B Regulates Axonal Development by Modulating Rho-GTPase Rac1 Activity. Molecular Biology of the Cell, 2010, 21, 3518-3528.	0.9	79
107	Hyperexcitability and epileptic seizures in a model of frontotemporal dementia. Neurobiology of Disease, 2013, 58, 200-208.	2.1	79
108	Characterization and structural aspects of the enhanced assembly of tubulin after removal of its carboxyl-terminal domain. FEBS Journal, 1986, 156, 375-381.	0.2	78

#	Article	IF	CITATIONS
109	Characterization of a double (amyloid precursor protein-tau) transgenic: Tau phosphorylation and aggregation. Neuroscience, 2005, 130, 339-347.	1.1	78
110	Propagation of Tau via Extracellular Vesicles. Frontiers in Neuroscience, 2019, 13, 698.	1.4	78
111	Tau aggregation into fibrillar polymers: taupathies. FEBS Letters, 2000, 476, 89-92.	1.3	77
112	The role of glycogen synthase kinase 3 in the early stages of Alzheimers' disease. FEBS Letters, 2008, 582, 3848-3854.	1.3	77
113	Phosphorylation of Microtubule Proteins in Rat Brain at Different Developmental Stages: Comparison with That Found in Neuronal Cultures. Journal of Neurochemistry, 1990, 54, 211-222.	2.1	76
114	Perinatal Lethality of Microtubule-Associated Protein 1B-Deficient Mice Expressing Alternative Isoforms of the Protein at Low Levels. Molecular and Cellular Neurosciences, 2000, 16, 408-421.	1.0	76
115	Glycogen Synthase Kinase-3 Is Activated in Neuronal Cells by Gα ₁₂ and Gα ₁₃ by Rho-Independent and Rho-Dependent Mechanisms. Journal of Neuroscience, 2002, 22, 6863-6875.	1.7	76
116	GSK-3 inhibitors for Alzheimer's disease. Expert Review of Neurotherapeutics, 2007, 7, 1527-1533.	1.4	76
117	Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. Brain Research, 2000, 853, 299-309.	1.1	75
118	Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons. Brain, 2017, 140, 3269-3285.	3.7	75
119	GSK3α, not GSK3β, drives hippocampal NMDARâ€dependent LTD via tauâ€mediated spine anchoring. EMBO Journal, 2021, 40, e105513.	3.5	75
120	Regulation of GSK3 isoforms by phosphatases PP1 and PP2A. Molecular and Cellular Biochemistry, 2010, 344, 211-215.	1.4	74
121	Tau Overexpression Results in Its Secretion via Membrane Vesicles. Neurodegenerative Diseases, 2012, 10, 73-75.	0.8	74
122	Novel function of Tau in regulating the effects of external stimuli on adult hippocampal neurogenesis. EMBO Journal, 2016, 35, 1417-1436.	3.5	74
123	Small heat shock proteins Hsp27 or αBâ€crystallin and the protein components of neurofibrillary tangles: Tau and neurofilaments. Journal of Neuroscience Research, 2008, 86, 1343-1352.	1.3	73
124	MAP-1 and MAP-2 binding sites at the C-terminus of .betatubulin. Studies with synthetic tubulin peptides. Biochemistry, 1991, 30, 4362-4366.	1.2	72
125	Selective alterations of neurons and circuits related to early memory loss in Alzheimerââ,¬â"¢s disease. Frontiers in Neuroanatomy, 2014, 8, 38.	0.9	72
126	M1 muscarinic receptor activation protects neurons from β-amyloid toxicity. A role for Wnt signaling pathway. Neurobiology of Disease, 2004, 17, 337-348.	2.1	71

#	Article	IF	CITATIONS
127	Tramiprosate, a drug of potential interest for the treatment of Alzheimer's disease, promotes an abnormal aggregation of tau. Molecular Neurodegeneration, 2007, 2, 17.	4.4	71
128	GSK3Î ² overexpression induces neuronal death and a depletion of the neurogenic niches in the dentate gyrus. Hippocampus, 2011, 21, 910-922.	0.9	71
129	Unraveling human adult hippocampal neurogenesis. Nature Protocols, 2020, 15, 668-693.	5.5	70
130	A discrete repeated sequence defines a tubulin binding domain on microtubule-associated protein tau. Archives of Biochemistry and Biophysics, 1989, 275, 568-579.	1.4	68
131	Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. Journal of Neuroscience Research, 2002, 67, 713-719.	1.3	68
132	Expression of Somatostatin, Cortistatin, and Their Receptors, as well as Dopamine Receptors, but not of Neprilysin, are Reduced in the Temporal Lobe of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2010, 20, 465-475.	1.2	67
133	New Features about Tau Function and Dysfunction. Biomolecules, 2016, 6, 21.	1.8	67
134	Purification and Properties of DNA-Dependent RNA Polymerase from Bacillus subtilis Vegetative Cells. FEBS Journal, 1971, 21, 526-535.	0.2	66
135	A polymorphism in the tau gene associated with risk for Alzheimer's disease. Neuroscience Letters, 2000, 278, 49-52.	1.0	66
136	Tau regulates the localization and function of Endâ€binding proteins 1 and 3 in developing neuronal cells. Journal of Neurochemistry, 2015, 133, 653-667.	2.1	66
137	Benefit of Oleuropein Aglycone for Alzheimer's Disease by Promoting Autophagy. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	66
138	BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons. Neurochemistry International, 2007, 50, 491-498.	1.9	65
139	Zeta 14-3-3 protein favours the formation of human tau fibrillar polymers. Neuroscience Letters, 2004, 357, 143-146.	1.0	64
140	The role of GSK3 in Alzheimer disease. Brain Research Bulletin, 2009, 80, 248-250.	1.4	64
141	GSK-3 mouse models to study neuronal apoptosis and neurodegeneration. Frontiers in Molecular Neuroscience, 2011, 4, 45.	1.4	64
142	Altered Ca ²⁺ dependence of synaptosomal plasma membrane Ca ²⁺ â€ATPase in human brain affected by Alzheimer's disease. FASEB Journal, 2009, 23, 1826-1834.	0.2	63
143	Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer's disease. Scientific Reports, 2019, 9, 15437.	1.6	63
144	Tau Protein and Adult Hippocampal Neurogenesis. Frontiers in Neuroscience, 2012, 6, 104.	1.4	62

#	Article	IF	CITATIONS
145	Microtubule dynamics. FASEB Journal, 1990, 4, 3284-3290.	0.2	61
146	Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment. Biochemical Journal, 1998, 335, 369-374.	1.7	61
147	Role of MAP1B in axonal retrograde transport of mitochondria. Biochemical Journal, 2006, 397, 53-59.	1.7	61
148	Microtubule-associated protein 1B is involved in the initial stages of axonogenesis in peripheral nervous system cultured neurons. Brain Research, 2002, 943, 56-67.	1.1	60
149	Tau antagonizes end-binding protein tracking at microtubule ends through a phosphorylation-dependent mechanism. Molecular Biology of the Cell, 2016, 27, 2924-2934.	0.9	60
150	Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 133, 507-513.	1.3	59
151	Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO Journal, 2007, 26, 2743-2754.	3.5	59
152	Novel connection between newborn granule neurons and the hippocampal CA2 field. Experimental Neurology, 2015, 263, 285-292.	2.0	59
153	Decreased CX3CL1 Levels in the Cerebrospinal Fluid of Patients With Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 609.	1.4	59
154	Tissue-nonspecific Alkaline Phosphatase Regulates Purinergic Transmission in the Central Nervous System During Development and Disease. Computational and Structural Biotechnology Journal, 2015, 13, 95-100.	1.9	58
155	Binding of Hsp90 to Tau Promotes a Conformational Change and Aggregation of Tau Protein. Journal of Alzheimer's Disease, 2009, 17, 319-325.	1.2	57
156	Microglia in Alzheimer's Disease in the Context of Tau Pathology. Biomolecules, 2020, 10, 1439.	1.8	56
157	InÂVivo Reprogramming Ameliorates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. Stem Cell Reports, 2020, 15, 1056-1066.	2.3	56
158	Phosphorylation of tubulin enhances its interaction with membranes. Nature, 1986, 323, 827-828.	13.7	55
159	Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-β-peptide aggregation. Neuroscience Letters, 2007, 429, 91-94.	1.0	55
160	Tau Function and Dysfunction in Neurons. Molecular Neurobiology, 2002, 25, 213-232.	1.9	54
161	Tau pathology-mediated presynaptic dysfunction. Neuroscience, 2016, 325, 30-38.	1.1	54
162	Effects of DNA on Microtubule Assembly. FEBS Journal, 1980, 105, 7-16.	0.2	53

#	Article	IF	CITATIONS
163	Antibodies to vimentin intermediate filaments in sera from patients with systemic lupus erythematosus. Arthritis and Rheumatism, 1984, 27, 922-928.	6.7	53
164	Glycogen Synthase Kinase-3 Modulates Neurite Outgrowth in Cultured Neurons: Possible Implications for Neurite Pathology in Alzheimer's Disease. Journal of Alzheimer's Disease, 1999, 1, 361-378.	1.2	53
165	Quantitation and characterization of the microtubule associated MAP2 in porcine tissues and its isolation from porcine (PK15) and human (HeLa) cell lines. Biochemical and Biophysical Research Communications, 1982, 105, 1241-1249.	1.0	52
166	Biochemical, Ultrastructural, and Reversibility Studies on Huntingtin Filaments Isolated from Mouse and Human Brain. Journal of Neuroscience, 2004, 24, 9361-9371.	1.7	52
167	Phosphorylation and Dephosphorylation in the Proline-Rich C-Terminal Domain of Microtubule-Associated Protein 2. FEBS Journal, 1996, 241, 765-771.	0.2	51
168	Quinones Facilitate the Self-Assembly of the Phosphorylated Tubulin Binding Region of Tau into Fibrillar Polymers. Biochemistry, 2004, 43, 2888-2897.	1.2	51
169	Immunotherapy for neurological diseases. Clinical Immunology, 2008, 128, 294-305.	1.4	51
170	Preferential binding of hog brain microtubule-associated proteins to mouse satellite versus bulk DNA preparations. Nature, 1978, 273, 403-405.	13.7	50
171	Tau factor polymers are similar to paired helical filaments of Alzheimer's disease. FEBS Letters, 1988, 236, 150-154.	1.3	49
172	Chronological primacy of oxidative stress in Alzheimer disease. Neurobiology of Aging, 2005, 26, 579-580.	1.5	49
173	A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. Molecular Therapy, 2006, 13, 598-608.	3.7	49
174	Dual effects of increased glycogen synthase kinase-3β activity on adult neurogenesis. Human Molecular Genetics, 2013, 22, 1300-1315.	1.4	49
175	Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B. FEBS Letters, 1993, 330, 85-89.	1.3	48
176	Aluminum induces the in vitro aggregation of bovine brain cytoskeletal proteins. Neuroscience Letters, 1990, 110, 221-226.	1.0	47
177	Tau in neurodegenerative diseases: Tau phosphorylation and assembly. Neurotoxicity Research, 2004, 6, 477-482.	1.3	47
178	Role for the α-Helix in Aberrant Protein Aggregationâ€. Biochemistry, 2005, 44, 149-156.	1.2	47
179	Binding of Microtubule Proteins to DNA: Specificity of the Interaction. FEBS Journal, 1978, 86, 473-479.	0.2	46
180	Implication of cyclin-dependent kinases and glycogen synthase kinase 3 in the phosphorylation of		46

Implication of cyclin-dependent kinases and glycogen synthase kinase 3 in the phosphil microtubule-associated protein 1B in developing neuronal cells. , 1998, 52, 445-452. 180

46

#	Article	IF	CITATIONS
181	GSK3 Inhibitors and Disease. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1024-1029.	1.1	46
182	Function of tau protein in adult newborn neurons. FEBS Letters, 2009, 583, 3063-3068.	1.3	46
183	The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Science Translational Medicine, 2020, 12, .	5.8	46
184	MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. NeuroReport, 1993, 4, 419-422.	0.6	44
185	Glycogen synthase kinase 3 phosphorylates recombinant human tau protein at serine-262 in the presence of heparin (or tubulin). FEBS Letters, 1995, 372, 65-68.	1.3	44
186	Olfactory Ensheathing Glia: Drivers of Axonal Regeneration in the Central Nervous System?. Journal of Biomedicine and Biotechnology, 2002, 2, 37-43.	3.0	44
187	Abnormal Tau Phosphorylation in the Thorny Excrescences of CA3 Hippocampal Neurons in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 26, 683-698.	1.2	44
188	Neurotoxicity Induced by Okadaic Acid in the Human Neuroblastoma SH-SY5Y Line Can Be Differentially Prevented by α7 and β2* Nicotinic Stimulation. Toxicological Sciences, 2011, 123, 193-205.	1.4	44
189	Lithium as a Treatment for Alzheimer's Disease: The Systems Pharmacology Perspective. Journal of Alzheimer's Disease, 2019, 69, 615-629.	1.2	44
190	GSK3β Is Involved in the Relief of Mitochondria Pausing in a Tau-Dependent Manner. PLoS ONE, 2011, 6, e27686.	1.1	44
191	The p38 pathway is activated in Pick disease and progressive supranuclear palsy: a mechanistic link between mitogenic pathways, oxidative stress, and tau. Neurobiology of Aging, 2002, 23, 855-859.	1.5	43
192	Tau Protein Role in Sleep-Wake Cycle. Journal of Alzheimer's Disease, 2010, 21, 411-421.	1.2	43
193	Cognitive Decline in Neuronal Aging and Alzheimer's Disease: Role of NMDA Receptors and Associated Proteins. Frontiers in Neuroscience, 2017, 11, 626.	1.4	43
194	A Multilevel View of the Development of Alzheimer's Disease. Neuroscience, 2021, 457, 283-293.	1.1	43
195	Characteristics of the binding of thioflavin S to tau paired helical filaments. Journal of Alzheimer's Disease, 2006, 9, 279-285.	1.2	42
196	Tau Aggregates and Tau Pathology. Journal of Alzheimer's Disease, 2008, 14, 449-452.	1.2	42
197	A modified form of microtubule-associated tau protein is the main component of paired helical filaments. Biochemical and Biophysical Research Communications, 1988, 154, 660-667.	1.0	41
198	Enhaced induction of the immunoproteasome by interferon gamma in neurons expressing mutant huntingtin. Neurotoxicity Research, 2004, 6, 463-468.	1.3	41

#	Article	IF	CITATIONS
199	Immortalized olfactory ensheathing glia promote axonal regeneration of rat retinal ganglion neurons. Journal of Neurochemistry, 2003, 85, 861-871.	2.1	40
200	CSK-3 dependent phosphoepitopes recognized by PHF-1 and AT-8 antibodies are present in different tau isoforms. Neurobiology of Aging, 2003, 24, 1087-1094.	1.5	40
201	MAP1B-dependent Rac activation is required for AMPA receptor endocytosis during long-term depression. EMBO Journal, 2013, 32, 2287-2299.	3.5	40
202	Beta-Amyloid Impairs Reelin Signaling. PLoS ONE, 2013, 8, e72297.	1.1	40
203	In Vitro Conditions for the Self-Polymerization of the Microtubule-Associated Protein, Tau Factor. Journal of Biochemistry, 1987, 102, 1415-1421.	0.9	39
204	New insights into the role of glycogen synthase kinase-3 in Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2014, 18, 69-77.	1.5	39
205	Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Experimental Neurology, 2018, 310, 14-21.	2.0	39
206	Binding of microtubule protein to DNA and chromatin: possibility of simultaneous linkage of microtubule to nucleic acid and assembly of the microtubule structure. Nucleic Acids Research, 1981, 9, 895-908.	6.5	38
207	Characterization of Microtubule-Associated Protein MAP1B:Â Phosphorylation State, Light Chains, and Binding to Microtubulesâ€. Biochemistry, 1996, 35, 3016-3023.	1.2	38
208	Progressive supranuclear palsy and tau hyperphosphorylation in a patient with a C212Y parkin mutation. Journal of Alzheimer's Disease, 2002, 4, 399-404.	1.2	38
209	Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. Biochemical Journal, 2005, 389, 333-341.	1.7	38
210	Effect of quinones on microtubule polymerization: a link between oxidative stress and cytoskeletal alterations in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 472-480.	1.8	38
211	Microtubule-associated Protein 1b, a Neuronal Marker Involved in Odontoblast Differentiation. Journal of Endodontics, 2009, 35, 992-996.	1.4	38
212	Somatic Signature of Brain-Specific Single Nucleotide Variations in Sporadic Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 1357-1382.	1.2	38
213	Differences Between Human and Murine Tau at the N-terminal End. Frontiers in Aging Neuroscience, 2020, 12, 11.	1.7	38
214	Localization of the Phosphorylation Sites for Different Kinases in the Microtubule-Associated Protein MAP2. Journal of Neurochemistry, 1987, 48, 84-93.	2.1	37
215	Microtubule-Associated Protein 1B Interaction with Tubulin Tyrosine Ligase Contributes to the Control of Microtubule Tyrosination. Developmental Neuroscience, 2008, 30, 200-210.	1.0	37
216	Further understanding of tau phosphorylation: implications for therapy. Expert Review of Neurotherapeutics, 2015, 15, 115-122.	1.4	37

#	Article	IF	CITATIONS
217	The Ever-Changing Morphology of Hippocampal Granule Neurons in Physiology and Pathology. Frontiers in Neuroscience, 2015, 9, 526.	1.4	37
218	Subunit Composition of B. subtilis RNA Polymerase. Nature, 1970, 226, 1244-1245.	13.7	36
219	Testing the ubiquitin–proteasome hypothesis of neurodegeneration in vivo. Trends in Neurosciences, 2004, 27, 66-69.	4.2	36
220	Tau Spreading Mechanisms; Implications for Dysfunctional Tauopathies. International Journal of Molecular Sciences, 2018, 19, 645.	1.8	36
221	Adeno-associated viral vector serotype 9–based gene therapy for Niemann-Pick disease type A. Science Translational Medicine, 2019, 11, .	5.8	36
222	End binding protein-1 (EB1) complements microtubule-associated protein-1B during axonogenesis. Journal of Neuroscience Research, 2005, 80, 350-359.	1.3	35
223	The anti-inflammatory and cholinesterase inhibitor bifunctional compound IBU-PO protects from Î2-amyloid neurotoxicity by acting on Wnt signaling components. Neurobiology of Disease, 2005, 18, 176-183.	2.1	35
224	Intracellular and extracellular tau. Frontiers in Neuroscience, 2010, 4, 49.	1.4	35
225	Tau Isoform with Three Microtubule Binding Domains is a Marker of New Axons Generated from the Subgranular Zone in the Hippocampal Dentate Gyrus: Implications for Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 29, 921-930.	1.2	35
226	Tau is required for the function of extrasynaptic NMDA receptors. Scientific Reports, 2019, 9, 9116.	1.6	35
227	An Increase in Phosphorylation of Microtubule-associated Protein 2 Accompanies Dendrite Extension During the Differentiation of Cultured Hippocampal Neurones. FEBS Journal, 1995, 227, 68-77.	0.2	34
228	Heme Catabolism and Heme Oxygenase in Neurodegenerative Disease. Antioxidants and Redox Signaling, 2004, 6, 888-894.	2.5	34
229	Thermodynamics of the Interaction between Alzheimer's Disease Related Tau Protein and DNA. PLoS ONE, 2014, 9, e104690.	1.1	34
230	Tau Protein Provides DNA with Thermodynamic and Structural Features which are Similar to those Found in Histone-DNA Complex. Journal of Alzheimer's Disease, 2014, 39, 649-660.	1.2	34
231	Localization and Characterization of Tubulin-Like Proteins Associated with Brain Mitochondria: The Presence of a Membrane-Specific Isoform. Journal of Neurochemistry, 1985, 45, 490-496.	2.1	33
232	The in vitro formation of recombinant Ï,, polymers. Molecular and Chemical Neuropathology, 1996, 27, 249-258.	1.0	33
233	Acetylcholine Receptors and Tau Phosphorylation. Current Molecular Medicine, 2006, 6, 423-428.	0.6	33
234	Different Susceptibility to Neurodegeneration of Dorsal and Ventral Hippocampal Dentate Gyrus: A Study with Transgenic Mice Overexpressing GSK3Î ² . PLoS ONE, 2011, 6, e27262.	1.1	33

#	Article	IF	CITATIONS
235	Forced swimming sabotages the morphological and synaptic maturation of newborn granule neurons and triggers a unique pro-inflammatory milieu in the hippocampus. Brain, Behavior, and Immunity, 2016, 53, 242-254.	2.0	33
236	Caspases first. Nature Reviews Neurology, 2010, 6, 587-588.	4.9	32
237	Kidins220 accumulates with tau in human Alzheimer's disease and related models: modulation of its calpain-processing by CSK3β/PP1 imbalance. Human Molecular Genetics, 2013, 22, 466-482.	1.4	32
238	Bi-directional genetic modulation of CSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death and Disease, 2018, 9, 969.	2.7	32
239	Location of the regions recognized by five commercial antibodies on the tubulin molecule. Analytical Biochemistry, 1986, 159, 253-259.	1.1	31
240	Alzheimer Center Reina Sofia Foundation: Fighting the Disease and Providing Overall Solutions. Journal of Alzheimer's Disease, 2010, 21, 337-348.	1.2	31
241	Role of tau N-terminal motif in the secretion of human tau by End Binding proteins. PLoS ONE, 2019, 14, e0210864.	1.1	31
242	Glycogen synthase kinase 3 phosphorylation of different residues in the presence of different factors: Analysis on tau protein. Molecular and Cellular Biochemistry, 1996, 165, 47-54.	1.4	30
243	Highly Efficient and Specific Gene Transfer to Purkinje CellsIn VivoUsing a Herpes Simplex Virus I Amplicon. Human Gene Therapy, 2002, 13, 665-674.	1.4	30
244	Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA. Frontiers in Synaptic Neuroscience, 2011, 3, 3.	1.3	30
245	Inhibition of PMCA activity by tau as a function of aging and Alzheimer's neuropathology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1465-1476.	1.8	30
246	The GABAergic septohippocampal connection is impaired in a mouse model of tauopathy. Neurobiology of Aging, 2017, 49, 40-51.	1.5	30
247	Reversibly immortalized human olfactory ensheathing glia from an elderly donor maintain neuroregenerative capacity. Clia, 2010, 58, 546-558.	2.5	29
248	Phospho-Tau Changes in the Human CA1 During Alzheimer's Disease Progression. Journal of Alzheimer's Disease, 2019, 69, 277-288.	1.2	29
249	The β-tubulin monomer release factor (p14) has homology with a region of the DnaJ protein. FEBS Letters, 1996, 397, 283-289.	1.3	28
250	Neurotoxic dopamine quinone facilitates the assembly of tau into fibrillar polymers. Molecular and Cellular Biochemistry, 2005, 278, 203-212.	1.4	28
251	Understanding the relationship between GSK-3 and Alzheimer's disease: a focus on how GSK-3 can modulate synaptic plasticity processes. Expert Review of Neurotherapeutics, 2013, 13, 495-503.	1.4	28
252	Mitophagy Failure in APP and Tau Overexpression Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 70, 525-540.	1.2	28

#	Article	IF	CITATIONS
253	Differential effects of tumor necrosis factor on the growth and differentiation of neuroblastoma and glioma cells. Experimental Cell Research, 1991, 194, 161-164.	1.2	27
254	The ζ Isozyme of Protein Kinase C Binds to Tubulin through the Pseudosubstrate Domain. Experimental Cell Research, 1997, 230, 1-8.	1.2	27
255	Phosphorylation of stathmin modulates its function as a microtubule depolymerizing factor. , 1998, 183, 201-210.		27
256	P24, a glycogen synthase kinase 3 (GSK 3) inhibitor. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1586, 113-122.	1.8	27
257	Assembly In Vitro of Tau Protein and its Implications in Alzheimers Disease. Current Alzheimer Research, 2004, 1, 97-101.	0.7	27
258	Neuronal Microtubule-associated Protein 2D Is a Dual A-kinase Anchoring Protein Expressed in Rat Ovarian Granulosa Cells. Journal of Biological Chemistry, 2004, 279, 27621-27632.	1.6	27
259	Tangling with hypothermia. Nature Medicine, 2004, 10, 460-461.	15.2	27
260	Sodium tungstate decreases the phosphorylation of tau through GSK3 inactivation. Journal of Neuroscience Research, 2006, 83, 264-273.	1.3	27
261	Role of tau protein on neocortical and hippocampal oscillatory patterns. Hippocampus, 2011, 21, 827-834.	0.9	27
262	Prevention of Senescence Progression in Reversibly Immortalized Human Ensheathing Glia Permits Their Survival After Deimmortalization. Molecular Therapy, 2010, 18, 394-403.	3.7	27
263	Use of Okadaic Acid to Identify Relevant Phosphoepitopes in Pathology: A Focus on Neurodegeneration. Marine Drugs, 2013, 11, 1656-1668.	2.2	27
264	Sources of Extracellular Tau and its Signaling. Journal of Alzheimer's Disease, 2014, 40, S7-S15.	1.2	27
265	Additional mechanisms conferring genetic susceptibility to Alzheimerââ,¬â"¢s disease. Frontiers in Cellular Neuroscience, 2015, 9, 138.	1.8	27
266	Tissue-type plasminogen activator (tPA) is the main plasminogen activator associated with isolated rat nerve growth cones. Neuroscience Letters, 1994, 180, 123-126.	1.0	26
267	NMDA-glutamate receptors regulate phosphorylation of dendritic cytoskeletal proteins in the hippocampus. Brain Research, 1997, 765, 141-148.	1.1	26
268	Distribution of CK2, its substrate MAP1B and phosphatases in neuronal cells. Molecular and Cellular Biochemistry, 1999, 191, 201-205.	1.4	26
269	Nuclear localization of N-terminal mutant huntingtin is cell cycle dependent. European Journal of Neuroscience, 2002, 16, 355-359.	1.2	26
270	Inhibition of CSK3 Dependent Tau Phosphorylation by Metals. Current Alzheimer Research, 2006, 3, 123-127.	0.7	26

#	Article	IF	CITATIONS
271	Tau Aggregation Followed by Atomic Force Microscopy and Surface Plasmon Resonance, and Single Molecule Tau-Tau Interaction Probed by Atomic Force Spectroscopy. Journal of Alzheimer's Disease, 2009, 18, 141-151.	1.2	26
272	MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Frontiers in Molecular Neuroscience, 2018, 11, 442.	1.4	26
273	The Social Component of Environmental Enrichment Is a Pro-neurogenic Stimulus in Adult c57BL6 Female Mice. Frontiers in Cell and Developmental Biology, 2019, 7, 62.	1.8	26
274	Reelin reverts biochemical, physiological and cognitive alterations in mouse models of Tauopathy. Progress in Neurobiology, 2020, 186, 101743.	2.8	26
275	Structural and functional domains of tubulin. BioEssays, 1985, 2, 165-169.	1.2	25
276	The temperature-sensitive defect in SV40 group D mutants. Virology, 1976, 73, 89-95.	1.1	24
277	Triiodothyronine (T3) induces neurite formation and increases synthesis of a protein related to MAP 1B in cultured cells of neuronal origin. Developmental Brain Research, 1988, 38, 141-148.	2.1	24
278	Lithium induces morphological differentiation of mouse neuroblastoma cells. , 1999, 57, 261-270.		24
279	Tau phosphorylation in hippocampus results in toxic gain-of-function. Biochemical Society Transactions, 2010, 38, 977-980.	1.6	24
280	Altered expression of brain acetylcholinesterase in FTDP-17 human tau transgenic mice. Neurobiology of Aging, 2012, 33, 624.e23-624.e34.	1.5	24
281	The Mixture of "Ecstasy―and Its Metabolites Impairs Mitochondrial Fusion/Fission Equilibrium and Trafficking in Hippocampal Neurons, at In Vivo Relevant Concentrations. Toxicological Sciences, 2014, 139, 407-420.	1.4	24
282	Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opinion on Therapeutic Targets, 2016, 20, 653-661.	1.5	24
283	Quantitation and characterization of tau factor in porcine tissues. Biochimica Et Biophysica Acta - General Subjects, 1986, 881, 456-461.	1.1	23
284	Tau-related protein present in paired helical filaments has a decreased tubulin binding capacity as compared with microtubule-associated protein tau. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1991, 1096, 197-204.	1.8	23
285	Characterization of microtubule-associated protein phosphoisoforms present in isolated growth cones. Developmental Brain Research, 1995, 89, 47-55.	2.1	23
286	Distribution and Characteristics of βII Tubulin-Enriched Microtubules in Interphase Cells. Experimental Cell Research, 1999, 248, 372-380.	1.2	23
287	Three-dimensional Structure of Human Tubulin Chaperone Cofactor A. Journal of Molecular Biology, 2002, 318, 1139-1149.	2.0	23
288	Tau deficiency leads to the upregulation of BAFâ€57, a protein involved in neuronâ€specific gene repression. FEBS Letters, 2010, 584, 2265-2270.	1.3	23

#	Article	IF	CITATIONS
289	A Simple Model to Study Tau Pathology. Journal of Experimental Neuroscience, 2016, 10, JEN.S25100.	2.3	23
290	CSK3Î ² Overexpression in Dentate Gyrus Neural Precursor Cells Expands the Progenitor Pool and Enhances Memory Skills. Journal of Biological Chemistry, 2016, 291, 8199-8213.	1.6	23
291	Toward common mechanisms for risk factors in Alzheimer's syndrome. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2017, 3, 571-578.	1.8	23
292	Phosphorylation modulates the alpha-helical structure and polymerization of a peptide from the third tau microtubule-binding repeat. Biochimica Et Biophysica Acta - General Subjects, 2005, 1721, 16-26.	1.1	22
293	The role of the VQIVYK peptide in tau protein phosphorylation. Journal of Neurochemistry, 2007, 103, 1447-1460.	2.1	22
294	MAP1B binds to the NMDA receptor subunit NR3A and affects NR3A protein concentrations. Neuroscience Letters, 2010, 475, 33-37.	1.0	22
295	Differences in structure and function between human and murine tau. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2024-2030.	1.8	22
296	[19] Proteolytic modification of tubulin. Methods in Enzymology, 1986, 134, 179-190.	0.4	21
297	Sulfo-glycosaminoglycan content affects PHF-tau solubility and allows the identification of different types of PHFs. Brain Research, 2002, 935, 65-72.	1.1	21
298	High level of amyloid precursor protein expression in neurite-promoting olfactory ensheathing glia (OEG) and OEG-derived cell lines. Journal of Neuroscience Research, 2003, 71, 871-881.	1.3	21
299	In vitro tau fibrillization: Mapping protein regions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 683-692.	1.8	21
300	The Quest to Repair the Damaged Spinal Cord. Recent Patents on CNS Drug Discovery, 2006, 1, 55-63.	0.9	21
301	The tau code. Frontiers in Aging Neuroscience, 2009, 1, 1.	1.7	21
302	Common mechanisms in neurodegeneration. Nature Medicine, 2010, 16, 1372-1372.	15.2	21
303	Alterations in the Nuclear Architecture Produced by the Overexpression of Tau Protein in Neuroblastoma Cells. Journal of Alzheimer's Disease, 2013, 36, 503-520.	1.2	21
304	Secretion of full-length tau or tau fragments in a cell culture model. Neuroscience Letters, 2016, 634, 63-69.	1.0	21
305	Decreased adult neurogenesis in hibernating Syrian hamster. Neuroscience, 2016, 333, 181-192.	1.1	21
306	Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1. Nature Communications, 2017, 8, 2275.	5.8	21

#	Article	IF	CITATIONS
307	Protein Kinase C-dependent in VivoPhosphorylation of Prourokinase Leads to the Formation of a Receptor Competitive Antagonist. Journal of Biological Chemistry, 1998, 273, 27734-27740.	1.6	20
308	Phosphorylated tau in neuritic plaques of APPsw/Tauvlw transgenic mice and Alzheimer disease. Acta Neuropathologica, 2008, 116, 409-418.	3.9	20
309	Patient-derived olfactory mucosa cells but not lung or skin fibroblasts mediate axonal regeneration of retinal ganglion neurons. Neuroscience Letters, 2012, 509, 27-32.	1.0	20
310	Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics. Cellular and Molecular Life Sciences, 2013, 70, 357-371.	2.4	20
311	The Involvement of Cholinergic Neurons in the Spreading of Tau Pathology. Frontiers in Neurology, 2013, 4, 74.	1.1	20
312	Untold New Beginnings: Adult Hippocampal Neurogenesis and Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, S497-S505.	1.2	20
313	A new non-aggregative splicing isoform of human Tau is decreased in Alzheimer's disease. Acta Neuropathologica, 2021, 142, 159-177.	3.9	20
314	Tau Aggregation. Neuroscience, 2023, 518, 64-69.	1.1	20
315	Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Frontiers in Endocrinology, 2022, 13, .	1.5	20
316	Detection of tubulin-binding proteins by an overlay assay. Analytical Biochemistry, 1988, 175, 91-95.	1.1	19
317	High External Potassium Induces an Increase in the Phosphorylation of the Cytoskeletal Protein MAP2 in Rat Hippocampal Slices. European Journal of Neuroscience, 1993, 5, 818-824.	1.2	19
318	Ephrin-B1 Promotes Dendrite Outgrowth on Cerebellar Granule Neurons. Molecular and Cellular Neurosciences, 2002, 20, 429-446.	1.0	19
319	Tau protein, the main component of paired helical filaments. Journal of Alzheimer's Disease, 2006, 9, 171-175.	1.2	19
320	Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. Glia, 2011, 59, 1458-1471.	2.5	19
321	Changes in tau phosphorylation in hibernating rodents. Journal of Neuroscience Research, 2013, 91, 954-962.	1.3	19
322	Two modes of microtubule-associated protein 1B phosphorylation are differentially regulated during peripheral nerve regeneration. Brain Research, 1999, 815, 213-226.	1.1	18
323	Calpainâ€mediated truncation of GSKâ€3 in postâ€mortem brain samples. Journal of Neuroscience Research, 2009, 87, 1156-1161.	1.3	18
324	Memantine Inhibits Calpain-Mediated Truncation of GSK-3 Induced by NMDA: Implications in Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 843-848.	1.2	18

#	Article	IF	CITATIONS
325	MDMA impairs mitochondrial neuronal trafficking in a Tau- and Mitofusin2/Drp1-dependent manner. Archives of Toxicology, 2014, 88, 1561-1572.	1.9	18
326	Frontotemporal Dementia-Associated N279K Tau Mutation Localizes at the Nuclear Compartment. Frontiers in Cellular Neuroscience, 2018, 12, 202.	1.8	18
327	Inhibition by Aplidine of the aggregation of the prion peptide PrP 106–126 into β-sheet fibrils. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1639, 133-139.	1.8	17
328	Park2-Null/Tau Transgenic Mice Reveal a Functional Relationship between Parkin and Tau. Journal of Alzheimer's Disease, 2008, 13, 161-172.	1.2	17
329	Microtubule Depolymerization and Tau Phosphorylation. Journal of Alzheimer's Disease, 2013, 37, 507-513.	1.2	17
330	AD genetic risk factors and tau spreading. Frontiers in Aging Neuroscience, 2015, 7, 99.	1.7	17
331	Tauâ€positive nuclear indentations in P301S tauopathy mice. Brain Pathology, 2017, 27, 314-322.	2.1	17
332	GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus. Frontiers in Neuroanatomy, 2017, 11, 18.	0.9	17
333	Differential accumulation of Tau phosphorylated at residues Thr231, Ser262 and Thr205 in hippocampal interneurons and its modulation by Tau mutations (VLW) and amyloid-β peptide. Neurobiology of Disease, 2019, 125, 232-244.	2.1	17
334	Tau phosphorylation by glycogen synthase kinase 3β modulates enzyme acetylcholinesterase expression. Journal of Neurochemistry, 2021, 157, 2091-2105.	2.1	17
335	Selenomethionine Incorporation into Amyloid Sequences Regulates Fibrillogenesis and Toxicity. PLoS ONE, 2011, 6, e27999.	1.1	17
336	The removal of the carboxy-terminal region of tubulin favors its vinblastine-induced aggregation into spiral-like structures. Archives of Biochemistry and Biophysics, 1986, 249, 611-615.	1.4	16
337	Tau as a Molecular Marker of Development, Aging and Neurodegenerative Disorders. Current Aging Science, 2008, 1, 56-61.	0.4	16
338	Differential gene expression analysis of human entorhinal cortex support a possible role of some extracellular matrix proteins in the onset of Alzheimer disease. Neuroscience Letters, 2010, 468, 225-228.	1.0	16
339	Looking for novel functions of tau. Biochemical Society Transactions, 2012, 40, 653-655.	1.6	16
340	Microtubule-associated protein, MAP2, is a calcium-binding protein. Biochimica Et Biophysica Acta - General Subjects, 1988, 965, 195-201.	1.1	15
341	Role of phosphorylated MAPIB in neuritogenesis. Cell Biology International, 1994, 18, 309-314.	1.4	15
342	A two-hybrid screening of human Tau protein: interactions with Alu-derived domain. NeuroReport, 2002, 13, 343-349.	0.6	15

#	Article	IF	CITATIONS
343	Expression of an altered form of tau in Sf9 insect cells results in the assembly of polymers resembling Alzheimer's paired helical filaments. Brain Research, 2004, 1007, 57-64.	1.1	15
344	Distinct X-chromosome SNVs from some sporadic AD samples. Scientific Reports, 2016, 5, 18012.	1.6	15
345	Retroviral induction of GSK-3Î ² expression blocks the stimulatory action of physical exercise on the maturation of newborn neurons. Cellular and Molecular Life Sciences, 2016, 73, 3569-3582.	2.4	15
346	Depletion of catalytic and regulatory subunits of protein kinase CK2 by antisense oligonucleotide treatment of neuroblastoma cells. Cellular and Molecular Neurobiology, 1994, 14, 407-414.	1.7	14
347	Involvement of \hat{I}^3 and \hat{I}^2 Actin Isoforms in Mouse Neuroblastoma Differentiation. European Journal of Neuroscience, 1996, 8, 1441-1451.	1.2	14
348	Downregulation of glycogen synthase kinase-3β (GSK-3β) protein expression during neuroblastoma IMR-32 cell differentiation. , 1999, 55, 278-285.		14
349	Characterization by atomic force microscopy and cryoelectron microscopy of tau polymers assembled in Alzheimer's disease1. Journal of Alzheimer's Disease, 2001, 3, 443-451.	1.2	14
350	Tau modifiers as therapeutic targets for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 211-215.	1.8	14
351	Argyrophilic Grain Pathology as a Natural Model of Tau Propagation. Journal of Alzheimer's Disease, 2014, 40, S123-S133.	1.2	14
352	Expression of Tau Produces Aberrant Plasma Membrane Blebbing in Glial Cells Through RhoA-ROCK-Dependent F-Actin Remodeling. Journal of Alzheimer's Disease, 2016, 52, 463-482.	1.2	14
353	Tau mRNA 3′UTR-to-CDS ratio is increased in Alzheimer disease. Neuroscience Letters, 2017, 655, 101-108.	1.0	14
354	Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro. Biomolecular Concepts, 2018, 9, 1-11.	1.0	14
355	Incorporation of the High-Molecular-Weight Microtubule-Associated Protein 2 (MAP2) into Microtubules at Steady State in vitro. FEBS Journal, 1980, 105, 307-313.	0.2	13
356	A Trypanosoma cruzi monoclonal antibody that recognizes a superficial tubulin-like antigen. Biochemical and Biophysical Research Communications, 1986, 139, 1176-1183.	1.0	13
357	Dephosphorylation of tau protein from Alzheimer's disease patients. Neuroscience Letters, 1994, 165, 175-178.	1.0	13
358	Microtubuleâ€Associatedâ€Protein MAP1 is not Implicated in the Polymerization of Microtubules. FEBS Journal, 1980, 112, 611-616.	0.2	13
359	Treating the Lesions, Not the Disease. American Journal of Pathology, 2007, 170, 1457-1459.	1.9	13
360	Coenzyme Q Induces Tau Aggregation, Tau Filaments, and Hirano Bodies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 428-434.	0.9	13

#	Article	IF	CITATIONS
361	Hyperphosphorylated tau aggregates in the cortex and hippocampus of transgenic mice with mutant human FTDP-17 Tau and lacking the PARK2 gene. Acta Neuropathologica, 2009, 117, 159-168.	3.9	13
362	Calpain regulates N-terminal interaction of GSK-3β with 14-3-3ζ, p53 and PKB but not with axin. Neurochemistry International, 2011, 59, 97-100.	1.9	13
363	Expression of frontotemporal dementia with parkinsonism associated to chromosome 17 tau induces specific degeneration of the ventral dentate gyrus and depressive-like behavior in mice. Neuroscience, 2011, 196, 215-227.	1.1	13
364	HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain. Molecular Neurobiology, 2017, 54, 188-199.	1.9	13
365	Biochemistry of Neurodegeneration. Science, 2001, 291, 595c-597.	6.0	13
366	Overcoming Cell Death and Tau Phosphorylation Mediated by PI3KInhibition: A Cell Assay to Measure Neuroprotection. CNS and Neurological Disorders - Drug Targets, 2011, 10, 208-214.	0.8	13
367	The Expression and Localisation of G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels Is Differentially Altered in the Hippocampus of Two Mouse Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 11106.	1.8	13
368	Tau phosphorylation and assembly. Acta Neurobiologiae Experimentalis, 2004, 64, 33-9.	0.4	13
369	Comparative measurement by radioimmunoassay of the brain microtubule-associated protein MAP2. Molecular and Cellular Biochemistry, 1981, 37, 185-189.	1.4	12
370	Role of the carboxy terminal region of \hat{l}^2 tubulin on microtubule dynamics through its interaction with the GTP phosphate binding region. FEBS Letters, 1993, 325, 173-176.	1.3	12
371	Memory and exploratory impairment in mice that lack the Park-2 gene and that over-express the human FTDP-17 mutant Tau. Behavioural Brain Research, 2008, 189, 350-356.	1.2	12
372	Crosstalk between Axonal Classical Microtubule-Associated Proteins and End Binding Proteins during Axon Extension: Possible Implications in Neurodegeneration. Journal of Alzheimer's Disease, 2014, 40, S17-S22.	1.2	12
373	Our Working Point of View of Tau Protein. Journal of Alzheimer's Disease, 2018, 62, 1277-1285.	1.2	12
374	Activity-Dependent Reconnection of Adult-Born Dentate Granule Cells in a Mouse Model of Frontotemporal Dementia. Journal of Neuroscience, 2019, 39, 5794-5815.	1.7	12
375	Focal cerebral ischemia induces changes in oligodendrocytic tau isoforms in the damaged area. Glia, 2020, 68, 2471-2485.	2.5	12
376	Blood DNA Methylation Patterns in Older Adults With Evolving Dementia. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1743-1749.	1.7	12
377	Microtubule-associated proteins present in different developmental stages ofDrosophila melanogaster. Journal of Cellular Biochemistry, 1987, 35, 83-92.	1.2	11
378	β-Tubulin folding is modulated by the isotype-specific carboxy-terminal domain. Journal of Molecular Biology, 1995, 246, 628-636.	2.0	11

#	Article	IF	CITATIONS
379	Effect of cortistatin on tau phosphorylation at Ser262 site. Journal of Neuroscience Research, 2008, 86, 2462-2475.	1.3	11
380	Tau regulates the subcellular localization of calmodulin. Biochemical and Biophysical Research Communications, 2011, 408, 500-504.	1.0	11
381	A Neuroregenerative Human Ensheathing Glia Cell Line with Conditional Rapid Growth. Cell Transplantation, 2011, 20, 153-166.	1.2	11
382	Epigenetic control of somatostatin and cortistatin expression by \hat{I}^2 amyloid peptide. Journal of Neuroscience Research, 2012, 90, 13-20.	1.3	11
383	Maturation dynamics of the axon initial segment (AIS) of newborn dentate granule cells in young adult C57BL/6J mice. Journal of Neuroscience, 2019, 39, 2253-18.	1.7	11
384	Differential phosphorylation of microtubule proteins by ATP and GTP. Molecular and Cellular Biochemistry, 1988, 79, 73-79.	1.4	10
385	Sodium butyrate induces major morphological changes in C6 glioma cells that are correlated with increased synthesis of a spectrin-like protein. Developmental Brain Research, 1989, 45, 291-295.	2.1	10
386	Rapid dephosphorylation of microtubule-associated protein 2 in the rat brain hippocampus after pentylenetetrazole-induced seizures. FEBS Journal, 1993, 215, 181-187.	0.2	10
387	Modifications of tau protein during neuronal cell death. Journal of Alzheimer's Disease, 2001, 3, 563-575.	1.2	10
388	Transgenic Mouse Models with Tau Pathology to Test Therapeutic Agents for Alzheimers Disease. Mini-Reviews in Medicinal Chemistry, 2002, 2, 51-58.	1.1	10
389	Regulation of EB1/3 proteins by classical MAPs in neurons. Bioarchitecture, 2014, 4, 1-5.	1.5	10
390	TNAP Plays a Key Role in Neural Differentiation as well as in Neurodegenerative Disorders. Sub-Cellular Biochemistry, 2015, 76, 375-385.	1.0	10
391	Microtubule-associated protein tau in murine kidney: role in podocyte architecture. Cellular and Molecular Life Sciences, 2022, 79, 97.	2.4	10
392	What's in a Gene? The Outstanding Diversity of MAPT. Cells, 2022, 11, 840.	1.8	10
393	The expression of casein kinase 2α′ and phosphatase 2A activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1449, 150-156.	1.9	9
394	Cortistatin as a therapeutic target in inflammation. Expert Opinion on Therapeutic Targets, 2007, 11, 1-9.	1.5	9
395	Nondenaturing Electrophoresis as a Tool to Investigate Tubulin Complexes. Methods in Cell Biology, 2010, 95, 59-75.	0.5	9
396	A culture model for neurite regeneration of human spinal cord neurons. Journal of Neuroscience Methods, 2011, 201, 346-354.	1.3	9

#	Article	IF	CITATIONS
397	Glycogen synthase kinase-3β regulates fractalkine production by altering its trafficking from Golgi to plasma membrane: implications for Alzheimer's disease. Cellular and Molecular Life Sciences, 2017, 74, 1153-1163.	2.4	9
398	Peripheral nervous system effects in the PS19 tau transgenic mouse model of tauopathy. Neuroscience Letters, 2019, 698, 204-208.	1.0	9
399	Common antigenic determinants of the tubulin binding domains of the microtubule-associated proteins MAP-2 and tau. BBA - Proteins and Proteomics, 1990, 1040, 382-390.	2.1	8
400	Protein kinases involved in the phosphorylation of human tau protein in transfected COS-1 cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1996, 1316, 43-50.	1.8	8
401	OP18/stathmin binds near the C-terminus of tubulin and facilitates GTP binding. FEBS Journal, 1999, 262, 557-562.	0.2	8
402	Phosphorylation of Tau Protein Associated as a Protective Mechanism in the Presence of Toxic, C-Terminally Truncated Tau in Alzheimer's Disease. , 0, , .		8
403	Is Tau a Prion-Like Protein?. Journal of Alzheimer's Disease, 2014, 40, S1-S3.	1.2	8
404	Phospho-Tau Accumulation and Structural Alterations of the Golgi Apparatus of Cortical Pyramidal Neurons in the P301S Tauopathy Mouse Model. Journal of Alzheimer's Disease, 2017, 60, 651-661.	1.2	8
405	EuroTau: towing scientists to tau without tautology. Acta Neuropathologica Communications, 2017, 5, 90.	2.4	8
406	Overexpression of GSK-3β in Adult Tet-OFF GSK-3β Transgenic Mice, and Not During Embryonic or Postnatal Development, Induces Tau Phosphorylation, Neurodegeneration and Learning Deficits. Frontiers in Molecular Neuroscience, 2020, 13, 561470.	1.4	8
407	Tauopathy Analysis in P301S Mouse Model of Alzheimer Disease Immunized with DNA and MVA Poxvirus-Based Vaccines Expressing Human Full-Length 4R2N or 3RC Tau Proteins. Vaccines, 2020, 8, 127.	2.1	8
408	Tau and neuron aging. , 2013, 4, 23-8.		8
409	Distribution of the phosphorylated form of microtubule associated protein 1B in the fish visual system during optic nerve regeneration. Brain Research Bulletin, 2001, 56, 131-137.	1.4	7
410	A mouse model to study tau pathology related with tau phosphorylation and assembly. Journal of the Neurological Sciences, 2007, 257, 250-254.	0.3	7
411	A Proteomic Approach for the Involvement of the GAPDH in Alzheimer Disease in the Blood of Moroccan FAD Cases. Journal of Molecular Neuroscience, 2014, 54, 774-779.	1.1	7
412	Alternative neural circuitry that might be impaired in the development of Alzheimer disease. Frontiers in Neuroscience, 2015, 9, 145.	1.4	7
413	Validation of Suspected Somatic Single Nucleotide Variations in the Brain of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2017, 56, 977-990.	1.2	7
414	Alzheimer's Disease and Empathic Abilities: The Proposed Role of the Cingulate Cortex. Journal of Alzheimer's Disease Reports, 2021, 5, 345-352.	1.2	7

#	Article	IF	CITATIONS
415	Memory and neurogenesis in aging and Alzheimer's disease. , 2010, 1, 30-6.		7
416	Somatic Mutations Detected in Parkinson Disease Could Affect Genes With a Role in Synaptic and Neuronal Processes. Frontiers in Aging, 2022, 3, .	1.2	7
417	Initiation of the transcription of $\hat{1} 29$ DNA by Bacillus subtilis RNA polymerase. Nucleic Acids and Protein Synthesis, 1974, 349, 320-327.	1.7	6
418	Regulatory aspects of the colchicine interactions with tubulin. Molecular and Cellular Biochemistry, 1987, 73, 29-36.	1.4	6
419	Variations in brain DNA. Frontiers in Aging Neuroscience, 2014, 6, 323.	1.7	6
420	New Beginnings in Alzheimer's Disease: The Most Prevalent Tauopathy. Journal of Alzheimer's Disease, 2018, 64, S529-S534.	1.2	6
421	Tau Protein as a New Regulator of Cellular Prion Protein Transcription. Molecular Neurobiology, 2020, 57, 4170-4186.	1.9	6
422	Similarities and Differences between Exome Sequences Found in a Variety of Tissues from the Same Individual. PLoS ONE, 2014, 9, e101412.	1.1	6
423	p38 Inhibition Decreases Tau Toxicity in Microglia and Improves Their Phagocytic Function. Molecular Neurobiology, 2022, 59, 1632-1648.	1.9	6
424	The influence of aging in one tauopathy: Alzheimer 's disease. Archivum Immunologiae Et Therapiae Experimentalis, 2004, 52, 410-3.	1.0	6
425	Homogeneity of lung tubulin isoforms during lung maturation. Biochimie, 1985, 67, 1059-1062.	1.3	5
426	Characterization of Alzheimer paired helical filaments by electron microscopy. Microscopy Research and Technique, 2005, 67, 121-125.	1.2	5
427	Tau Kinase I Overexpression Induces Dentate Gyrus Degeneration. Neurodegenerative Diseases, 2010, 7, 13-15.	0.8	5
428	Ultrastructural localization of fructoseâ€1,6â€bisphosphatase in mouse brain. Microscopy Research and Technique, 2011, 74, 329-336.	1.2	5
429	Fragmentation of the Colgi Apparatus in Neuroblastoma Cells Is Associated with Tau-Induced Ring-Shaped Microtubule Bundles. Journal of Alzheimer's Disease, 2018, 65, 1185-1207.	1.2	5
430	GSK3β overexpression driven by GFAP promoter improves rotarod performance. Brain Research, 2019, 1712, 47-54.	1.1	5
431	Is tau a suitable therapeutical target in tauopathies?. World Journal of Biological Chemistry, 2010, 1, 81.	1.7	5
432	p38 activation occurs mainly in microglia in the P301S Tauopathy mouse model. Scientific Reports, 2022, 12, 2130.	1.6	5

#	Article	IF	CITATIONS
433	DNA polymerase activity, probably DNA polymerase \hat{I} ±, remains associated to microtubules after successive polymerization cycles. Biochemical and Biophysical Research Communications, 1980, 92, 237-246.	1.0	4
434	Effect of Acetylcholine on Tau Phosphorylation in Human Neuroblastoma Cells. Journal of Molecular Neuroscience, 2006, 30, 185-188.	1.1	4
435	Specific Profile of Tau Isoforms in Argyrophylic Grain Disease. Journal of Experimental Neuroscience, 2013, 7, JEN.S12202.	2.3	4
436	Commentary: Genome-wide association study identifies 74 loci associated with educational attainment. Frontiers in Molecular Neuroscience, 2017, 10, 23.	1.4	4
437	Protein Biomarkers for the Diagnosis of Alzheimer's Disease at Different Stages of Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 6749.	1.8	4
438	Quantitative determination of tubulin and characterization of tubulin forms during development in Drosophila melanogaster. Cell Differentiation, 1985, 16, 63-69.	1.3	3
439	Characterization of a membrane-specific tubulin isoform by peptide mapping. Bioscience Reports, 1986, 6, 913-919.	1.1	3
440	lodination of proteins on nitrocellulose blotting paper. Journal of Proteomics, 1988, 16, 17-25.	2.4	3
441	Quantitation of microtubule-associated protein MAP-1B in brain and other tissues. International Journal of Biochemistry & Cell Biology, 1989, 21, 723-730.	0.8	3
442	Neuronal Models for Studying Tau Pathology. International Journal of Alzheimer's Disease, 2010, 2010, 1-11.	1.1	3
443	Prospects on the Origin of Alzheimer's disease. Journal of Alzheimer's Disease, 2010, 20, 669-672.	1.2	3
444	Excitotoxicity induced by kainic acid provokes glycogen synthase kinase-3 truncation in the hippocampus. Brain Research, 2015, 1611, 84-92.	1.1	3
445	Protocols for Monitoring the Development of Tau Pathology in Alzheimer's Disease. Methods in Molecular Biology, 2016, 1303, 143-160.	0.4	3
446	The Role of TGF-β1 in Promoting Microglial Aβ Phagocytosis. Neuroscience, 2020, 438, 215-216.	1.1	3
447	Versatile use of rtTA-expressing retroviruses in the study of neurodegeneration. Oncotarget, 2017, 8, 10771-10772.	0.8	3
448	Loneliness as Risk Factor for Alzheimer´s disease. Current Aging Science, 2022, 15, 293-296.	0.4	3
449	Interaction of Contractile Proteins with DNA. FEBS Journal, 1978, 83, 529-535.	0.2	2
450	Characterization of Tubulin Isotype-Specific Antibodies by Electrophoretic Mobility Shift Assay. BioTechniques, 1998, 25, 940-942.	0.8	2

#	Article	IF	CITATIONS
451	A meeting to remember. EMBO Reports, 2006, 7, 768-773.	2.0	2
452	Binding of Tau Protein to the Ends of ex vivo Paired Helical Filaments. Journal of Alzheimer's Disease, 2008, 13, 177-185.	1.2	2
453	Tau Phosphorylation. Advances in Neurobiology, 2011, , 73-82.	1.3	2
454	Muscarinic receptors and Alzheimer's disease. Neurodegenerative Disease Management, 2011, 1, 267-269.	1.2	2
455	Alzheimer's Disease: Advances for a New Century. Journal of Alzheimer's Disease, 2012, 33, S1-S1.	1.2	2
456	Structural and Functional Relationships Between GSK3α and GSK3β Proteins. Current Biotechnology, 2012, 1, 80-87.	0.2	2
457	Tau Triggers Tear Secretion by Interacting with Muscarinic Acetylcholine Receptors in New Zealand White Rabbits. Journal of Alzheimer's Disease, 2014, 40, S71-S77.	1.2	2
458	Building Bridges through Science. Neuron, 2017, 96, 730-735.	3.8	2
459	Tau Exon 10 Inclusion by PrPC through Downregulating GSK3β Activity. International Journal of Molecular Sciences, 2021, 22, 5370.	1.8	2
460	Functional protection in J20/VLW mice: a model of non-demented with Alzheimer's disease neuropathology. Brain, 2022, 145, 729-743.	3.7	2
461	Profiling of Argonaute-2-loaded microRNAs in a mouse model of frontotemporal dementia with parkinsonism-17. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10, 172-183.	0.8	2
462	TNAP upregulation is a critical factor in Tauopathies and its blockade ameliorates neurotoxicity and increases life-expectancy. Neurobiology of Disease, 2022, 165, 105632.	2.1	2
463	Specific Peptide from the Novel W-Tau Isoform Inhibits Tau and Amyloid β Peptide Aggregation <i>In Vitro</i> . ACS Chemical Neuroscience, 0, , .	1.7	2
464	Characteristics of the binding of colchicine to porcine brain, cerebellum, pancreas, kidney, liver and spleen soluble protein: A comparative study. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1984, 79, 107-111.	0.2	1
465	Interaction of an Na+-channel toxin, purified from scorpion venom, with micro tubule proteins in vitro. Biochemical Society Transactions, 1985, 13, 1210-1211.	1.6	1
466	The Carboxyterminal Region of Tubulin Regulates Its Assembly into Microtubules. Annals of the New York Academy of Sciences, 1986, 466, 642-644.	1.8	1
467	Control of microtubule polymerization and stability. Cytoskeleton: A Multi-Volume Treatise, 1995, 1, 47-85.	0.1	1
468	A Putative beta-Tubulin Phosphate-Binding Motif is Involved in Lateral Microtubule Protofilament Interactions. FEBS Journal, 1997, 248, 840-847.	0.2	1

#	Article	IF	CITATIONS
469	Tau regulates the localization and function of End Binding proteins in neuronal cells. SpringerPlus, 2015, 4, L16.	1.2	1
470	Human Brain Single Nucleotide Polymorphism: Validation of DNA Sequencing. Journal of Alzheimer's Disease Reports, 2018, 2, 103-109.	1.2	1
471	Birth of JAD: 20 Years Later. Journal of Alzheimer's Disease, 2018, 62, 901-901.	1.2	1
472	Microtubule Proteins. , 0, , .		1
473	Role of Polyglycine Repeats in the Regulation of Clycogen Synthase Kinase Activity. Protein and Peptide Letters, 2008, 15, 586-589.	0.4	1
474	The interaction between a Na+-channel toxin and brain microtubule proteins in vitro. Molecular Brain Research, 1986, 1, 43-51.	2.5	0
475	Subcellular localization of iodinated thyroid tubulin. Bioscience Reports, 1989, 9, 375-382.	1.1	Ο
476	Phosphorylation, Microtubule Binding and Aggregation of Tau Protein in Alzheimer's Disease. , 0, , 601-607.		0
477	GSK-3, a Key Player in Alzheimer's Disease. , 0, , 105-124.		Ο
478	Animal Models with Modified Expression of GSK-3 for the Study of Its Physiology and of Its Implications in Human Pathologies. , 0, , 203-219.		0
479	European Alzheimer Disease Funding. Nature Medicine, 2006, 12, 776-777.	15.2	Ο
480	Neuronal disorders: introduction. Cellular and Molecular Life Sciences, 2007, 64, 2191-2193.	2.4	0
481	Centro de Biologia Molecular "Severo Ochoa†A Center for Basic Research into Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 21, 325-335.	1.2	Ο
482	Boronate-Tau Mediated Uptake in Neurons. Journal of Alzheimer's Disease, 2014, 40, 143-151.	1.2	0
483	TAU TRANSPORT FROM CELL TO CELL. , 2014, 10, P161-P161.		Ο
484	[F3–07–01]: TAU SECRETION AND PROPAGATION. Alzheimer's and Dementia, 2017, 13, P887.	0.4	0
485	Preface: Alzheimer's Disease: New Beginnings. Journal of Alzheimer's Disease, 2018, 64, S1-S1.	1.2	0
486	GSKâ€3β S9A overexpression leads murine hippocampal neural precursors to acquire an astroglial phenotype in vivo. Developmental Neurobiology, 2021, 81, 710-723.	1.5	0

#	Article	IF	CITATIONS
487	Brain aging, epigenetic changes, tau and neurodegeneration. Aging Brain, 2021, 1, 100004.	0.7	0
488	A Possible Mechanism for the Stimulation of Cell DNA Synthesis by Viral Infection. , 1994, , 149-151.		0
489	Co-expression of FTDP-17 Human Tau and GSK-3ß (or APPSW) in Transgenic Mice: Induction of Tau Polymerization and Neurodegeneration. , 2008, , 337-342.		0