Yun-Fang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5404642/publications.pdf Version: 2024-02-01

YUN-FANC YANC

#	Article	IF	CITATIONS
1	Computational insights into different regioselectivities in the Ir-porphyrin-catalyzed C–H insertion reaction of quinoid carbene. Organic Chemistry Frontiers, 2022, 9, 1143-1151.	2.3	2
2	Tuning the Excited State of Tetradentate Pd(II) and Pt(II) Complexes through Benzannulated N â€Heteroaromatic Ring and Central Metal. Chinese Journal of Chemistry, 2022, 40, 223-234.	2.6	8
3	Ni-Catalyzed Ligand-Controlled Selective 5-Exo and 6-Endo Cyclization/Cross-Couplings Involving an Unusual 1,2-Aryl Migration. ACS Catalysis, 2022, 12, 4131-4140.	5.5	7
4	Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp ³)â^'H azidation. Science, 2022, 376, 869-874.	6.0	36
5	Tandem 1,6-addition/cyclopropanation/rearrangement reaction of vinylogous <i>para</i> -quinone methides with 3-chlorooxindoles: construction of vicinal quaternary carbon centers. Organic Chemistry Frontiers, 2022, 9, 3697-3708.	2.3	3
6	Computational Exploration of Dinuclear MgCo Complex-Catalyzed Ring-Opening Copolymerization of Cyclohexene Oxide and CO ₂ . Macromolecules, 2022, 55, 5766-5774.	2.2	1
7	Fused 6/5/6 Metallocycle-Based Tetradentate Pt(II) Emitters for Efficient Green Phosphorescent OLEDs. Inorganic Chemistry, 2022, 61, 11218-11231.	1.9	8
8	Enantioselective Arylation of Tetrasubstituted Enamines: Access to Enantioenriched Indolenine and 1H-Indole Derivatives. ACS Catalysis, 2021, 11, 1827-1832.	5.5	11
9	<i>N</i> -Heterocyclic Carbene-Based Tetradentate Pd(II) Complexes for Deep-Blue Phosphorescent Materials. Organometallics, 2021, 40, 472-481.	1.1	10
10	Inherent Selectivity of Pd C–H Activation from Different Metal Oxidation States. Organometallics, 2021, 40, 2290-2294.	1.1	5
11	Tetradentate Platinum(II) and Palladium(II) Complexes Containing Fused 6/6/6 or 6/6/5 Metallocycles with Azacarbazolylcarbazole-Based Ligands. Inorganic Chemistry, 2021, 60, 12972-12983.	1.9	17
12	Rapid and highly sensitive colorimetric biosensor for the detection of glucose and hydrogen peroxide based on nanoporphyrin combined with bromine as a peroxidase-like catalyst. Sensors and Actuators B: Chemical, 2021, 343, 130104.	4.0	16
13	Mechanistic Investigation of Palladium-Catalyzed <i>meta</i> -C–H Bond Activation of Arenes with a Carboxyl Directing Group. Journal of Organic Chemistry, 2021, 86, 13475-13480.	1.7	4
14	A mechanistic study of the manganese porphyrin-catalyzed C–H isocyanation reaction. Organic Chemistry Frontiers, 2021, 8, 1858-1866.	2.3	7
15	N-Heterocyclic carbene-based tetradentate platinum(<scp>ii</scp>) complexes for phosphorescent OLEDs with high brightness. Journal of Materials Chemistry C, 2021, 10, 210-218.	2.7	18
16	Mechanism and stereoselectivity of benzylic C–H hydroxylation by Ru–porphyrin: a computational study. Organic and Biomolecular Chemistry, 2020, 18, 346-352.	1.5	8
17	Tetradentate Platinum(II) Complexes for Highly Efficient Phosphorescent Emitters and Sky Blue OLEDs. Chemistry of Materials, 2020, 32, 537-548.	3.2	61
18	Phosphorescent Tetradentate Platinum(II) Complexes Containing Fused 6/5/5 or 6/5/6 Metallocycles. Inorganic Chemistry, 2020, 59, 18109-18121.	1.9	12

Yun-Fang Yang

#	Article	IF	CITATIONS
19	Computational Studies on the Mechanism and Origin of the Different Regioselectivities of Manganese Porphyrin-Catalyzed C–H Bond Hydroxylation and Amidation of Equilenin Acetate. Journal of Organic Chemistry, 2020, 85, 14879-14889.	1.7	17
20	Intramolecular hydrogen bond-induced high chemical stability of metal–organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 3548-3554.	3.0	14
21	Tuning the Excited State of Tetradentate Pd(II) Complexes for Highly Efficient Deep-Blue Phosphorescent Materials. Inorganic Chemistry, 2020, 59, 13502-13516.	1.9	16
22	Rh(<scp>iii</scp>)-catalyzed, hydrazine-directed C–H functionalization with 1-alkynylcyclobutanols: a new strategy for 1 <i>H</i> -indazoles. Chemical Communications, 2020, 56, 7415-7418.	2.2	28
23	Highly Efficient Phosphorescent Tetradentate Platinum(II) Complexes Containing Fused 6/5/6 Metallocycles. Inorganic Chemistry, 2020, 59, 3718-3729.	1.9	27
24	Understanding the structures and aromaticity of heteroporphyrins with computations. Organic and Biomolecular Chemistry, 2020, 18, 4415-4422.	1.5	7
25	Simultaneous quantitative structureâ€activity relationship analysis of catalyst activity and selectivity in the direct oxidation of C―H bonds. Journal of Chemometrics, 2019, 33, e3165.	0.7	3
26	Computational Exploration of Chiral Iron Porphyrin-Catalyzed Asymmetric Hydroxylation of Ethylbenzene Where Stereoselectivity Arises from π–π Stacking Interaction. Journal of Organic Chemistry, 2019, 84, 13755-13763.	1.7	10
27	Metal-Assisted Delayed Fluorescent Pd(II) Complexes and Phosphorescent Pt(II) Complex Based on [1,2,4]Triazolo[4,3- <i>a</i>]pyridine-Containing Ligands: Synthesis, Characterization, Electrochemistry, Photophysical Studies, and Application. Inorganic Chemistry, 2019, 58, 14349-14360.	1.9	35
28	Highly Enantioselective Hydrogenation of Non- <i>ortho</i> -Substituted 2-Pyridyl Aryl Ketones via Iridium- <i>f</i> -Diaphos Catalysis. Organic Letters, 2019, 21, 5392-5396.	2.4	30
29	Multiple roles of silver salts in palladium-catalyzed C–H activations. Journal of Organometallic Chemistry, 2018, 864, 19-25.	0.8	93
30	The Distortion/Interaction Model for Analysis of Activation Energies of Organic Reactions. , 2018, , 371-402.		3
31	A Highly Enantioselective Copper/Phosphoramiditeâ€Thioetherâ€Catalyzed Diastereodivergent 1,3â€Dipolar Cycloaddition of Azomethine Ylides and Nitroalkenes. Chemistry - A European Journal, 2018, 24, 1714-1719.	1.7	31
32	Computational Exploration of a Pd(II)-Catalyzed γ-C–H Arylation Where Stereoselectivity Arises from Attractive Aryl–Aryl Interactions. Journal of Organic Chemistry, 2018, 83, 14786-14790.	1.7	8
33	Computational exploration of Pdâ€eatalyzed C–H bond activation reactions. International Journal of Quantum Chemistry, 2018, 118, e25723.	1.0	11
34	Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nature Chemistry, 2018, 10, 1048-1055.	6.6	131
35	A potassium tert-butoxide and hydrosilane system for ultra-deep desulfurization of fuels. Nature Energy, 2017, 2, .	19.8	55
36	Potassium <i>tert</i> -Butoxide-Catalyzed Dehydrogenative C–H Silylation of Heteroaromatics: A Combined Experimental and Computational Mechanistic Study. Journal of the American Chemical Society, 2017, 139, 6867-6879.	6.6	160

#	Article	IF	CITATIONS
37	Mechanism, Regio-, and Diastereoselectivity of Rh(III)-Catalyzed Cyclization Reactions of <i>N</i> -Arylnitrones with Alkynes: A Density Functional Theory Study. Journal of Physical Chemistry A, 2017, 121, 4496-4504.	1.1	17
38	lonic and Neutral Mechanisms for C–H Bond Silylation of Aromatic Heterocycles Catalyzed by Potassium <i>tert</i> -Butoxide. Journal of the American Chemical Society, 2017, 139, 6880-6887.	6.6	111
39	Cage-Walking: Vertex Differentiation by Palladium-Catalyzed Isomerization of B(9)-Bromo- <i>meta</i> -Carborane. Journal of the American Chemical Society, 2017, 139, 7729-7732.	6.6	97
40	The Origins of Dramatic Differences in Five-Membered vs Six-Membered Chelation of Pd(II) on Efficiency of C(sp ³)–H Bond Activation. Journal of the American Chemical Society, 2017, 139, 8514-8521.	6.6	96
41	Palladium-Catalyzed Suzuki–Miyaura Coupling of Aryl Esters. Journal of the American Chemical Society, 2017, 139, 1311-1318.	6.6	212
42	Dynamic Ligand Exchange as a Mechanistic Probe in Pd-Catalyzed Enantioselective C–H Functionalization Reactions Using Monoprotected Amino Acid Ligands. Journal of the American Chemical Society, 2017, 139, 18500-18503.	6.6	18
43	Computational Exploration of Concerted and Zwitterionic Mechanisms of Diels–Alder Reactions between 1,2,3-Triazines and Enamines and Acceleration by Hydrogen-Bonding Solvents. Journal of the American Chemical Society, 2017, 139, 18213-18221.	6.6	35
44	Experimental–Computational Synergy for Selective Pd(II)-Catalyzed C–H Activation of Aryl and Alkyl Groups. Accounts of Chemical Research, 2017, 50, 2853-2860.	7.6	189
45	Nickelâ€Catalyzed Activation of Acyl Câ^'O Bonds of Methyl Esters. Angewandte Chemie - International Edition, 2016, 55, 2810-2814.	7.2	142
46	Metal-Free Synthesis of 3-Arylquinolin-2-ones from Acrylic Amides via a Highly Regioselective 1,2-Aryl Migration: An Experimental and Computational Study. Journal of Organic Chemistry, 2016, 81, 4058-4065.	1.7	35
47	Computational Exploration of Rh ^{III} /Rh ^V and Rh ^{III} /Rh ^I Catalysis in Rhodium(III)-Catalyzed C–H Activation Reactions of <i>N</i> -Phenoxyacetamides with Alkynes. Journal of the American Chemical Society, 2016, 138, 6861-6868.	6.6	116
48	Ligand-accelerated enantioselective methylene C(sp ³)–H bond activation. Science, 2016, 353, 1023-1027.	6.0	296
49	Nickelâ€Catalyzed Activation of Acyl Câ^'O Bonds of Methyl Esters. Angewandte Chemie, 2016, 128, 2860-2864.	1.6	36
50	Diels–Alder Reactivities of Benzene, Pyridine, and Di-, Tri-, and Tetrazines: The Roles of Geometrical Distortions and Orbital Interactions. Journal of the American Chemical Society, 2016, 138, 1660-1667.	6.6	91
51	Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds. Nature, 2015, 524, 79-83.	13.7	479
52	Enzymatic hydroxylation of an unactivated methylene C–H bond guided by molecular dynamics simulations. Nature Chemistry, 2015, 7, 653-660.	6.6	100
53	Generation and Regioselective Trapping of a 3,4-Piperidyne for the Synthesis of Functionalized Heterocycles. Journal of the American Chemical Society, 2015, 137, 4082-4085.	6.6	64
54	Computational Exploration of Mechanism and Selectivities of (NHC)Nickel(II)hydride-Catalyzed Hydroalkenylations of Styrene with α-Olefins. ACS Catalysis, 2015, 5, 5545-5555.	5.5	50

Yun-Fang Yang

#	Article	IF	CITATIONS
55	Ligand-Controlled Diastereoselective 1,3-Dipolar Cycloadditions of Azomethine Ylides with Methacrylonitrile. Organic Letters, 2015, 17, 6166-6169.	2.4	16
56	Palladium-Catalyzed <i>Meta</i> -Selective C–H Bond Activation with a Nitrile-Containing Template: Computational Study on Mechanism and Origins of Selectivity. Journal of the American Chemical Society, 2014, 136, 344-355.	6.6	317
57	Mechanism and Selectivity of <i>N</i> -Triflylphosphoramide Catalyzed (3 ⁺ + 2) Cycloaddition between Hydrazones and Alkenes. Journal of the American Chemical Society, 2014, 136, 13769-13780.	6.6	72
58	Palladium-catalyzed benzo[d]isoxazole synthesis by C–H activation/[4 + 1] annulation. Chemical Science, 2014, 5, 1574-1578.	3.7	67
59	Synthesis of Indolo[2,1- <i>a</i>]isoquinolines via a Triazene-Directed C–H Annulation Cascade. Journal of Organic Chemistry, 2014, 79, 11863-11872.	1.7	87
60	Ligand-Controlled Reactivity, Selectivity, and Mechanism of Cationic Ruthenium-Catalyzed Hydrosilylations of Alkynes, Ketones, and Nitriles: A Theoretical Study. Journal of Organic Chemistry, 2014, 79, 8856-8864.	1.7	44
61	Role of <i>N</i> -Acyl Amino Acid Ligands in Pd(II)-Catalyzed Remote C–H Activation of Tethered Arenes. Journal of the American Chemical Society, 2014, 136, 894-897.	6.6	263
62	Computational Studies on the Mechanism of the Copperâ€Catalyzed sp ³ â€CH Crossâ€Dehydrogenative Coupling Reaction. ChemPlusChem, 2013, 78, 943-951.	1.3	42
63	Siliconâ€Containing Formal 4ï€â€Electron Fourâ€Membered Ring Systems: Antiaromatic, Aromatic, or Nonaromatic?. Chemistry - A European Journal, 2012, 18, 7516-7524.	1.7	51
64	Theoretical studies on the mechanism and stereoselectivity of Rh(Phebox)-catalyzed asymmetric reductive aldol reaction. Organic and Biomolecular Chemistry, 2011, 9, 5845.	1.5	26
65	An Unprecedented Silver Salt Effect Switches the Facial Selectivity in the Vinylogous Mukaiyama Aldol Reaction. Advanced Synthesis and Catalysis, 2010, 352, 2387-2393.	2.1	11
66	Construction of All-Carbon Quaternary Center by R2AlClâ^'Mediated Ring-Opening Reaction of Oxacycles. Organic Letters, 2010, 12, 488-491.	2.4	16