
Pantelis N Trikalitis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5404246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accessing 14-Connected Nets: Continuous Breathing, Hydrophobic Rare-Earth Metal Organic Frameworks Based on 14-c Hexanuclear Clusters with High Affinity for Non-Polar Vapors. ACS Applied Materials & Interfaces, 2022, 14, 22242-22251.	4.0	7
2	A diamino-functionalized silsesquioxane pillared graphene oxide for CO ₂ capture. RSC Advances, 2021, 11, 13743-13750.	1.7	1
3	Continuous Breathing Rare-Earth MOFs Based on Hexanuclear Clusters with Gas Trapping Properties. Journal of the American Chemical Society, 2021, 143, 10250-10260.	6.6	30
4	Water-stable 2-D Zr MOFs with exceptional UO ₂ ²⁺ sorption capability. Journal of Materials Chemistry A, 2020, 8, 1849-1857.	5.2	29
5	Remarkable Structural Diversity between Zr/Hf and Rare-Earth MOFs via Ligand Functionalization and the Discovery of Unique (4, 8)-c and (4, 12)-connected Frameworks. Journal of the American Chemical Society, 2020, 142, 15986-15994.	6.6	40
6	Improving the Cd2+ detection capability of a new anionic rare earth metal–organic framework based on a [RE6(μ3-OH)8]10+ secondary building unit: an ion-exchange approach towards more efficient sensors. Molecular Systems Design and Engineering, 2020, 5, 1077-1087.	1.7	8
7	A Microporous Co(II)-Based 3-D Metal Organic Framework Built from Magnetic Infinite Rod-Shaped Secondary Building Units. European Journal of Inorganic Chemistry, 2019, 2019, 4056-4062.	1.0	4
8	A Microporous Co(II)-Based 3-D Metal Organic Framework Built from Magnetic Infinite Rod-Shaped Secondary Building Units. European Journal of Inorganic Chemistry, 2019, 2019, 4055-4055.	1.0	0
9	Water Interaction with Mineral Dust Aerosol: Particle Size and Hygroscopic Properties of Dust. ACS Earth and Space Chemistry, 2018, 2, 376-386.	1.2	37
10	High-quality graphene sheets decorated with ZIF-8 nanocrystals. Microporous and Mesoporous Materials, 2018, 262, 68-76.	2.2	12
11	Heterometallic In(III)–Pd(II) Porous Metal–Organic Framework with Square-Octahedron Topology Displaying High CO ₂ Uptake and Selectivity toward CH ₄ and N ₂ . Inorganic Chemistry, 2018, 57, 7244-7251.	1.9	37
12	Comparative Study of Supported Monometallic Catalysts in the Liquid-Phase Hydrogenation of Furfural: Batch Versus Continuous Flow. ACS Sustainable Chemistry and Engineering, 2018, 6, 9831-9844.	3.2	58
13	Chalcogenide Aerogels as Sorbents for Noble Gases (Xe, Kr). ACS Applied Materials & Interfaces, 2017, 9, 33389-33394.	4.0	25
14	Directed assembly of a high surface area 2D metal–organic framework displaying the augmented "kagomé dual―(kgd-a) layered topology with high H ₂ and CO ₂ uptake. Inorganic Chemistry Frontiers, 2017, 4, 825-832.	3.0	8
15	Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films. Chemical Communications, 2017, 53, 6191-6194.	2.2	53
16	Structural Stability, Vibrational Properties, and Photoluminescence in CsSnI ₃ Perovskite upon the Addition of SnF ₂ . Inorganic Chemistry, 2017, 56, 84-91.	1.9	105
17	Reticular Chemistry and the Discovery of a New Family of Rare Earth (4, 8)-Connected Metal-Organic Frameworks with csq Topology Based on RE ₄ (μ ₃ -O) ₂ (COO) ₈ Clusters. ACS Applied Materials &: Interfaces. 2017. 9. 44560-44566.	4.0	25
18	Mercouri G. Kanatzidis: Excellence and Innovations in Inorganic and Solid-State Chemistry. Inorganic Chemistry, 2017, 56, 7582-7597.	1.9	7

#	Article	IF	CITATIONS
19	Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. Journal of the American Chemical Society, 2016, 138, 12767-12770.	6.6	101
20	Exceptional gravimetric and volumetric CO2 uptake in a palladated NbO-type MOF utilizing cooperative acidic and basic, metal–CO2 interactions. Chemical Communications, 2016, 52, 10559-10562.	2.2	40
21	A microporous Cu ²⁺ MOF based on a pyridyl isophthalic acid Schiff base ligand with high CO ₂ uptake. Inorganic Chemistry Frontiers, 2016, 3, 1527-1535.	3.0	22
22	Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced CH ₄ Storage. Journal of the American Chemical Society, 2016, 138, 1568-1574.	6.6	193
23	A Microporous Co ²⁺ Metal Organic Framework with Single-Crystal to Single-Crystal Transformation Properties and High CO ₂ Uptake. Crystal Growth and Design, 2015, 15, 185-193.	1.4	24
24	MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH ₄ , O ₂ , and CO ₂ Storage. Journal of the American Chemical Society, 2015, 137, 13308-13318.	6.6	632
25	Drastic Enhancement of the CO ₂ Adsorption Properties in Sulfone-Functionalized Zr- and Hf-UiO-67 MOFs with Hierarchical Mesopores. Inorganic Chemistry, 2014, 53, 679-681.	1.9	87
26	A "turn-onâ€â€"turning-to-ratiometric sensor for zinc(<scp>ii</scp>) ions in aqueous media. RSC Advances, 2014, 4, 693-696.	1.7	10
27	Toward Efficient Drug Delivery through Suitably Prepared Metal–Organic Frameworks: A First-Principles Study. Journal of Physical Chemistry C, 2014, 118, 8885-8890.	1.5	37
28	Cs ₂ M ^{II} M ^{IV} ₃ Q ₈ (Q = S, Se, Te): An Extensive Family of Layered Semiconductors with Diverse Band Gaps. Chemistry of Materials, 2013, 25, 3344-3356.	3.2	75
29	Controlled preparation of carbon nanotube–iron oxide nanoparticle hybrid materials by a modified wet impregnation method. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	13
30	A Straight Forward Route for the Development of Metal–Organic Frameworks Functionalized with Aromatic â^'OH Groups: Synthesis, Characterization, and Gas (N ₂ , Ar, H ₂ ,) Tj ETQq0 0 855-862.	0 rg₿T /Ov	verlock 10 Tf
31	Disposable screen-printed sensors modified with bismuth precursor compounds for the rapid voltammetric screening of trace Pb(II) and Cd(II). Analytica Chimica Acta, 2012, 728, 1-8.	2.6	83
32	Hydrogen Storage in Novel Li-Doped Corrole Metal-Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 8359-8363.	1.5	30
33	A Highly Porous Interpenetrated Metal–Organic Framework from the Use of a Novel Nanosized Organic Linker. Inorganic Chemistry, 2011, 50, 11297-11299.	1.9	33
34	Remarkable structural diversity and single-crystal-to-single-crystal transformations in sulfone functionalized lanthanide MOFs. CrystEngComm, 2010, 12, 1034-1037.	1.3	39
35	Unprecedented Sulfoneâ€Functionalized Metal–Organic Frameworks and Gasâ€&orption Properties. Chemistry - A European Journal, 2009, 15, 4523-4527.	1.7	124
36	(H2NC4H8NCH2CH2NH2)(HNCH2CH2NH2)3Zn2Ge2Se8: A new, templated one-dimensional ternary semiconductor stabilized by mixed organic cations. Polyhedron, 2009, 28, 3193-3198.	1.0	9

#	Article	IF	CITATIONS
37	(H2NC4H8NCH2CH2NH2)2Zn2Sn2Se7: a hybrid ternary semiconductor stabilized by amine molecules acting simultaneously as ligands and counterions. Chemical Communications, 2009, , 1556.	2.2	10
38	Molecular Supertetrahedron Decorated with Exposed Sulfonate Groups Built from Mixed-Valence Tetranuclear Fe ₃ ³⁺ Fe ²⁺ (μ ₃ -Ο)(μ ₃ -SO ₄)< Clusters. Inorganic Chemistry, 2009, 48, 9968-9970.	sub>3 <td>b>(<mark>2⁸CO<sub< mark=""></sub<></mark></td>	b>(<mark>2⁸CO<sub< mark=""></sub<></mark>
39	Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 152, 44-49.	1.7	36
40	Straightforward Route to the Adamantane Clusters [Sn4Q10]4â^' (Q = S, Se, Te) and Use in the Assembly of Open-Framework Chalcogenides (Me4N)2M[Sn4Se10] (M = MnII, FeII, CoII, ZnII) Including the First Telluride Member (Me4N)2Mn[Ge4Te10]. Inorganic Chemistry, 2008, 47, 11920-11929.	1.9	50
41	Charge Transport in a Single Superconducting Tin Nanowire Encapsulated in a Multiwalled Carbon Nanotube. Nano Letters, 2008, 8, 3060-3064.	4.5	33
42	Porous Semiconducting Gels and Aerogels from Chalcogenide Clusters. Science, 2007, 317, 490-493.	6.0	381
43	Novel Coordination Polymers Based on the Tetrathioterephthalate Dianion as the Bridging Ligand. Inorganic Chemistry, 2007, 46, 8487-8489.	1.9	36
44	Carbon Nanotubes Encapsulating Superconducting Single-Crystalline Tin Nanowires. Nano Letters, 2006, 6, 1131-1135.	4.5	86
45	Mesostructured cobalt and nickel molybdenum sulfides. Microporous and Mesoporous Materials, 2006, 88, 187-190.	2.2	11
46	Electrochemical study of ferrocene intercalated vanadium pentoxide xerogel/polyvinyl alcohol composite films: Application in the development of amperometric biosensors. Electrochemistry Communications, 2005, 7, 781-788.	2.3	29
47	Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochemistry Communications, 2005, 7, 1398-1404.	2.3	121
48	Three-Dimensional Structure of Nanocomposites from Atomic Pair Distribution Function Analysis:Â Study of Polyaniline and (Polyaniline)0.5V2O5·1.0H2O. Journal of the American Chemical Society, 2005, 127, 8805-8812.	6.6	52
49	Periodic Hexagonal Mesostructured Chalcogenides Based on Platinum and [SnSe4]4-and [SnTe4]4-Precursors. Solvent Dependence of Nanopore and Wall Organization. Journal of the American Chemical Society, 2005, 127, 3910-3920.	6.6	32
50	Cooling of Melts: Kinetic Stabilization and Polymorphic Transitions in the KInSnSe4 System ChemInform, 2004, 35, no.	0.1	0
51	Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials. Microporous and Mesoporous Materials, 2004, 75, 89-100.	2.2	70
52	Mesostructured Selenides with Cubic MCM-48 Type Symmetry:Â Large Framework Elasticity and Uncommon Resiliency to Strong Acids. Journal of the American Chemical Society, 2004, 126, 15326-15327.	6.6	28
53	Cooling of Melts:Â Kinetic Stabilization and Polymorphic Transitions in the KInSnSe4System. Inorganic Chemistry, 2004, 43, 2237-2239.	1.9	23
54	Magnetic Fe2O3–Al2O3 composites prepared by a modified wet impregnation method. Journal of Materials Chemistry, 2003, 13, 871-876.	6.7	36

PANTELIS N TRIKALITIS

#	Article	IF	CITATIONS
55	High nuclearity nickel compounds with three, four or five metal atoms showing antibacterial activity. Journal of Inorganic Biochemistry, 2003, 93, 256-264.	1.5	112
56	Structure of Redox Intercalated (NH4)0.5V2O5·mH2O Xerogel Using the Pair Distribution Function Technique. Chemistry of Materials, 2003, 15, 3337-3342.	3.2	43
57	Surfactant Templated Assembly of Cubic Mesostructured Semiconductors Based on [Sn2Se6] 4- and Pt2+ in Single-Crystal Form Materials Research Society Symposia Proceedings, 2002, 755, 1.	0.1	1
58	Single-Crystal Mesostructured Semiconductors with Cubicla3̄dSymmetry and Ion-Exchange Properties. Journal of the American Chemical Society, 2002, 124, 12255-12260.	6.6	102
59	Platinum Chalcogenido MCM-41 Analogues. High Hexagonal Order in Mesostructured Semiconductors Based on Pt2+and [Ge4Q10]4-(Q = S, Se) and [Sn4Se10]4-Adamantane Clusters. Journal of the American Chemical Society, 2002, 124, 2604-2613.	6.6	79
60	Structure of V2O5·nH2O Xerogel Solved by the Atomic Pair Distribution Function Technique. Journal of the American Chemical Society, 2002, 124, 10157-10162.	6.6	406
61	Hexagonal Pore Organization in Mesostructured Metal Tin Sulfides Built with [Sn2S6]4- Cluster. Nano Letters, 2002, 2, 513-517.	4.5	63
62	Quaternary Germanides Formed in Molten Aluminum: Tb2NiAl4Ge2 and Ce2NiAl6-xGe4-y (x â ⁻¹ ⁄4 0.24, y â ⁻¹ ⁄4) Tj E Anorganische Und Allgemeine Chemie, 2002, 628, 1568.	TQq0 0 0 0.6	rgBT /Overlo 22
63	Hexagonal mesostructured chalcogenide frameworks formed by linking [Ge4Q10]4â^' (Q = S, Se) clusters with Sb3+ and Sn4+. Chemical Communications, 2001, , 809-810.	2.2	25
64	Surfactant Templated Assembly of Hexagonal Mesostructured Semiconductors Based on [Ge4Q10]4- (Q=S, Se) and Pd2+ and Pt2+ ions. Materials Research Society Symposia Proceedings, 2001, 703, 1.	0.1	0
65	Surfactant Templated Assembly of Hexagonal Mesostructured Semiconductors Based on [Ge4Q10]4- (Q=S, Se) and Pd2+ and Pt2+ ions Materials Research Society Symposia Proceedings, 2001, 707, 871.	0.1	0
66	Varied pore organization in mesostructured semiconductors based on the [SnSe4]4- anion. Nature, 2001, 410, 671-675.	13.7	161
67	Supramolecular Assembly of Hexagonal Mesostructured Germanium Sulfide and Selenide Nanocomposites Incorporating the Biologically Relevant Fe4S4 Cluster. Angewandte Chemie - International Edition, 2000, 39, 4558-4562.	7.2	32
68	Light-Emitting Meso-Structured Sulfides with Hexagonal Symmetry:Â Supramolecular Assembly of [Ge4S10]4-Clusters with Trivalent Metal Ions and Cetylpyridinium Surfactant. Journal of the American Chemical Society, 2000, 122, 10230-10231.	6.6	70