
Declan F Mccole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5404135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Finding a mate for MLCK: improving the potential for therapeutic targeting of gut permeability. Gut, 2023, 72, 814-815.	12.1	1
2	Autoimmune susceptibility gene <i>PTPN2</i> is required for clearance of adherent-invasive <i>Escherichia coli</i> by integrating bacterial uptake and lysosomal defence. Gut, 2022, 71, 89-99.	12.1	9
3	Loss of protein tyrosine phosphatase non-receptor type 2 reduces IL-4-driven alternative macrophage activation. Mucosal Immunology, 2022, 15, 74-83.	6.0	10
4	Induction of distinct neuroinflammatory markers and gut dysbiosis by differential pyridostigmine bromide dosing in a chronic mouse model of GWI showing persistent exercise fatigue and cognitive impairment. Life Sciences, 2022, 288, 120153.	4.3	7
5	The JAK Inhibitor Tofacitinib Rescues Intestinal Barrier Defects Caused by Disrupted Epithelial-macrophage Interactions. Journal of Crohn's and Colitis, 2021, 15, 471-484.	1.3	30
6	Every breath you take: Impacts of environmental dust exposure on intestinal barrier function–from the gut-lung axis to COVID-19. American Journal of Physiology - Renal Physiology, 2021, 320, G586-G600.	3.4	14
7	T cell protein tyrosine phosphatase protects intestinal barrier function by restricting epithelial tight junction remodeling. Journal of Clinical Investigation, 2021, 131, .	8.2	18
8	ZOning in on Novel Roles for Zonula Occludens Proteins in Epithelial Repair. Gastroenterology, 2021, 161, 1797-1800.	1.3	1
9	JAK-STAT Pathway Regulation of Intestinal Permeability: Pathogenic Roles and Therapeutic Opportunities in Inflammatory Bowel Disease. Pharmaceuticals, 2021, 14, .	3.8	2
10	JAK-STAT Pathway Regulation of Intestinal Permeability: Pathogenic Roles and Therapeutic Opportunities in Inflammatory Bowel Disease. Pharmaceuticals, 2021, 14, 840.	3.8	15
11	The JAK-Inhibitor Tofacitinib Rescues Human Intestinal Epithelial Cells and Colonoids from Cytokine-Induced Barrier Dysfunction. Inflammatory Bowel Diseases, 2020, 26, 407-422.	1.9	58
12	Resveratrol Inhibits Neointimal Growth after Arterial Injury in High-Fat-Fed Rodents: The Roles of SIRT1 and AMPK. Journal of Vascular Research, 2020, 57, 325-340.	1.4	5
13	The autoimmune susceptibility gene, <i>PTPN2</i> , restricts expansion of a novel mouse adherent-invasive <i>E. coli</i> . Gut Microbes, 2020, 11, 1547-1566.	9.8	12
14	PTPN2 Regulates Interactions Between Macrophages and Intestinal Epithelial Cells to Promote Intestinal Barrier Function. Gastroenterology, 2020, 159, 1763-1777.e14.	1.3	62
15	Presence of PTPN2 SNP rs1893217 Enhances the Anti-inflammatory Effect of Spermidine. Inflammatory Bowel Diseases, 2020, 26, 1038-1049.	1.9	5
16	Loss of PTPN22 abrogates the beneficial effect of cohousing-mediated fecal microbiota transfer in murine colitis. Mucosal Immunology, 2019, 12, 1336-1347.	6.0	21
17	AMPK mediates inhibition of electrolyte transport and NKCC1 activity by reactive oxygen species. American Journal of Physiology - Renal Physiology, 2019, 317, G171-G181.	3.4	8
18	A Simulated Microgravity Environment Causes a Sustained Defect in Epithelial Barrier Function. Scientific Reports, 2019, 9, 17531.	3.3	18

DECLAN F MCCOLE

#	Article	IF	CITATIONS
19	Epithelial-microbial diplomacy: escalating border tensions drive inflammation in inflammatory bowel disease. Intestinal Research, 2019, 17, 177-191.	2.6	14
20	PTPN2 Regulates Inflammasome Activation and Controls Onset of Intestinal Inflammation and Colon Cancer. Cell Reports, 2018, 22, 1835-1848.	6.4	80
21	All Hands on Deck: Commensals, Th17 Cells, and Neutrophils Provide Short-term Compensation of Constitutive Permeability Defects Against Acute Infection. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 326-327.	4.5	0
22	T cell protein tyrosine phosphatase prevents STAT1 induction of claudinâ€⊋ expression in intestinal epithelial cells. Annals of the New York Academy of Sciences, 2017, 1405, 116-130.	3.8	23
23	Mechanisms of Intestinal Epithelial Barrier Dysfunction byÂAdherent-Invasive Escherichia coli. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 41-50.	4.5	87
24	Hydrogen peroxide scavenger, catalase, alleviates ion transport dysfunction in murine colitis. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 1097-1106.	1.9	20
25	VSL#3 Probiotic Stimulates T-cell Protein Tyrosine Phosphatase–mediated Recovery of IFN-γ–induced Intestinal Epithelial Barrier Defects. Inflammatory Bowel Diseases, 2016, 22, 2811-2823.	1.9	31
26	Protein tyrosine phosphatase non-receptor type 2 and inflammatory bowel disease. World Journal of Gastroenterology, 2016, 22, 1034.	3.3	28
27	A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa. Pharmacology Research and Perspectives, 2015, 3, e00128.	2.4	7
28	Role of Protein Tyrosine Phosphatases in Regulating the Immune System. Inflammatory Bowel Diseases, 2015, 21, 645-655.	1.9	32
29	IBD Candidate Genes and Intestinal Barrier Regulation. Inflammatory Bowel Diseases, 2014, 20, 1829-1849.	1.9	125
30	Cholera Toxin Disrupts Barrier Function by Inhibiting Exocyst-Mediated Trafficking of Host Proteins to Intestinal Cell Junctions. Cell Host and Microbe, 2013, 14, 294-305.	11.0	82
31	Altered Expression and Localization of Ion Transporters Contribute to Diarrhea in Mice With Salmonella-Induced Enteritis. Gastroenterology, 2013, 145, 1358-1368.e4.	1.3	48
32	Spermidine Stimulates T Cell Protein-tyrosine Phosphatase-mediated Protection of Intestinal Epithelial Barrier Function. Journal of Biological Chemistry, 2013, 288, 32651-32662.	3.4	27
33	Phosphatase regulation of intercellular junctions. Tissue Barriers, 2013, 1, e26713.	3.2	23
34	Challenges in IBD Research. Inflammatory Bowel Diseases, 2013, 19, 677-682.	1.9	31
35	Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology, 2013, 58, 108-119.	7.3	187
36	Activation of Protein Tyrosine Phosphatase Non-Receptor Type 2 by Spermidine Exerts Anti-Inflammatory Effects in Human THP-1 Monocytes and in a Mouse Model of Acute Colitis. PLoS ONE, 2013, 8, e73703.	2.5	36

DECLAN F MCCOLE

#	Article	IF	CITATIONS
37	Interferon-Î ³ Alters Downstream Signaling Originating from Epidermal Growth Factor Receptor in Intestinal Epithelial Cells. Journal of Biological Chemistry, 2012, 287, 2144-2155.	3.4	22
38	Protein Tyrosine Phosphatase Nonreceptor Type 2 Regulates Autophagosome Formation in Human Intestinal Cells. Inflammatory Bowel Diseases, 2012, 18, 1287-1302.	1.9	60
39	Crohn's disease-associated polymorphism within the PTPN2 gene affects muramyl-dipeptide-induced cytokine secretion and autophagy. Inflammatory Bowel Diseases, 2012, 18, 900-912.	1.9	71
40	Regulation of epithelial barrier function by the inflammatory bowel disease candidate gene, <i>PTPN2</i> . Annals of the New York Academy of Sciences, 2012, 1257, 108-114.	3.8	35
41	Simulated microgravity modifies intestinal epithelial barrier function and alters expression of tight junction proteins. FASEB Journal, 2012, 26, 1107.4.	0.5	1
42	Protein tyrosine phosphatase N2 regulates TNFÂ-induced signalling and cytokine secretion in human intestinal epithelial cells. Gut, 2011, 60, 189-197.	12.1	72
43	Protein Tyrosine Phosphatase non-Receptor Type 2 regulates IFN-Î ³ -induced cytokine signaling in THP-1 monocytes. Inflammatory Bowel Diseases, 2010, 16, 2055-2064.	1.9	71
44	Loss of protein tyrosine phosphatase N2 potentiates epidermal growth factor suppression of intestinal epithelial chloride secretion. American Journal of Physiology - Renal Physiology, 2010, 299, G935-G945.	3.4	24
45	Expression of the Crohn's disease candidate gene, PTPN2, is upregulated in active Crohn's disease. FASEB Journal, 2010, 24, 998.4.	0.5	Ο
46	AMP-activated Protein Kinase Mediates the Interferon-Î ³ -induced Decrease in Intestinal Epithelial Barrier Function. Journal of Biological Chemistry, 2009, 284, 27952-27963.	3.4	93
47	CXCR2-Dependent Mucosal Neutrophil Influx Protects against Colitis-Associated Diarrhea Caused by an Attaching/Effacing Lesion-Forming Bacterial Pathogen. Journal of Immunology, 2009, 183, 3332-3343.	0.8	83
48	Protection of Epithelial Barrier Function by the Crohn's Disease Associated Gene Protein Tyrosine Phosphatase N2. Gastroenterology, 2009, 137, 2030-2040.e5.	1.3	100
49	Interferonâ€gamma (IFN γ) induced epithelial barrier dysfunction in T84 human intestinal epithelial cells (IECs) occurs via phosphatidylinositol 3â€kinase (PI3â€K) mediated activation of adenosine monophosphateâ€activated protein kinase (AMPK). FASEB Journal, 2009, 23, 978.2.	0.5	Ο
50	Hydrogen peroxide inhibits Ca 2+ â€dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB Journal, 2008, 22, 2023-2036.	0.5	14
51	A crucial role for HVEM and BTLA in preventing intestinal inflammation. Journal of Experimental Medicine, 2008, 205, 1463-1476.	8.5	118
52	Consequences of Direct Versus Indirect Activation of Epidermal Growth Factor Receptor in Intestinal Epithelial Cells Are Dictated by Protein-tyrosine Phosphatase 1B. Journal of Biological Chemistry, 2007, 282, 13303-13315.	3.4	27
53	Varied role of the gut epithelium in mucosal homeostasis. Current Opinion in Gastroenterology, 2007, 23, 647-654.	2.3	54
54	Hydrogen peroxide inhibits colonic epithelial ion transport by MAP kinase and PI3â€kinase (PI3K) independently of activated epidermal growth factor receptor (EGFr). FASEB Journal, 2006, 20, .	0.5	0

DECLAN F MCCOLE

#	Article	IF	CITATIONS
55	Epidermal Growth Factor Partially Restores Colonic Ion Transport Responses in Mouse Models of Chronic Colitis. Gastroenterology, 2005, 129, 591-608.	1.3	55
56	Epidermal Growth Factor Partially Restores Colonic Ion Transport Responses in Mouse Models of Chronic Colitis. Gastroenterology, 2005, 129, 591-608.	1.3	44
57	Epithelial transport and gut barrier function in colitis. Current Opinion in Gastroenterology, 2003, 19, 578-582.	2.3	21
58	Transactivation of the Epidermal Growth Factor Receptor in Colonic Epithelial Cells by Carbachol Requires Extracellular Release of Transforming Growth Factor-α. Journal of Biological Chemistry, 2002, 277, 42603-42612.	3.4	102
59	Intestinal Epithelial Cell Apoptosis following Cryptosporidium parvum Infection. Infection and Immunity, 2000, 68, 1710-1713.	2.2	139
60	Pathogenesis of Cryptosporidium parvum infection. Microbes and Infection, 1999, 1, 141-148.	1.9	67
61	Complement Activation of Electrogenic Ion Transport in Isolated Rat Colon. Biochemical Pharmacology, 1997, 54, 1133-1137.	4.4	4