
Gregory J Pazour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5404032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Scientific Reports, 2017, 7, 1.	1.6	26,112
2	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	6.0	2,354
3	The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science, 2004, 306, 79-86.	6.0	1,862
4	Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella. Journal of Cell Biology, 2000, 151, 709-718.	2.3	1,009
5	Proteomic analysis of a eukaryotic cilium. Journal of Cell Biology, 2005, 170, 103-113.	2.3	933
6	The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7705-7710.	3.3	563
7	PDGFRαα Signaling Is Regulated through the Primary Cilium in Fibroblasts. Current Biology, 2005, 15, 1861-1866.	1.8	517
8	A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development (Cambridge), 2004, 131, 4085-4093.	1.2	475
9	Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Current Biology, 2002, 12, R378-R380.	1.8	472
10	The Intraflagellar Transport Protein IFT20 Is Associated with the Golgi Complex and Is Required for Cilia Assembly. Molecular Biology of the Cell, 2006, 17, 3781-3792.	0.9	449
11	The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. Journal of Cell Biology, 2002, 157, 103-114.	2.3	441
12	The DHC1b (DHC2) Isoform of Cytoplasmic Dynein Is Required for Flagellar Assembly. Journal of Cell Biology, 1999, 144, 473-481.	2.3	432
13	The vertebrate primary cilium is a sensory organelle. Current Opinion in Cell Biology, 2003, 15, 105-110.	2.6	420
14	A Dynein Light Chain Is Essential for the Retrograde Particle Movement of Intraflagellar Transport (IFT). Journal of Cell Biology, 1998, 141, 979-992.	2.3	393
15	Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature, 2015, 521, 520-524.	13.7	357
16	The <i>Chlamydomonas reinhardtii</i> BBSome is an IFT cargo required for export of specific signaling proteins from flagella. Journal of Cell Biology, 2009, 187, 1117-1132.	2.3	314
17	Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nature Genetics, 2013, 45, 1004-1012.	9.4	290
18	Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nature Cell Biology, 2009, 11, 1332-1339.	4.6	271

#	Article	IF	CITATIONS
19	Intraflagellar transport and cilia-dependent diseases. Trends in Cell Biology, 2002, 12, 551-555.	3.6	270
20	Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. Journal of Cell Biology, 2008, 183, 377-384.	2.3	244
21	IFT27 Links the BBSome to IFT for Maintenance of the Ciliary Signaling Compartment. Developmental Cell, 2014, 31, 279-290.	3.1	225
22	Radial spoke proteins of Chlamydomonas flagella. Journal of Cell Science, 2006, 119, 1165-1174.	1.2	215
23	Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. Journal of Cell Biology, 2007, 176, 653-665.	2.3	200
24	IFT25 Links the Signal-Dependent Movement of Hedgehog Components to Intraflagellar Transport. Developmental Cell, 2012, 22, 940-951.	3.1	196
25	CapSeq and CIP-TAP Identify Pol II Start Sites and Reveal Capped Small RNAs as C.Âelegans piRNA Precursors. Cell, 2012, 151, 1488-1500.	13.5	192
26	Function and dynamics of PKD2 in <i>Chlamydomonas reinhardtii</i> flagella. Journal of Cell Biology, 2007, 179, 501-514.	2.3	183
27	Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene, 1990, 90, 149-151.	1.0	178
28	Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. Journal of Cell Biology, 2004, 166, 637-643.	2.3	175
29	Intraflagellar Transport and Cilia-Dependent Renal Disease: The Ciliary Hypothesis of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2004, 15, 2528-2536.	3.0	170
30	The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex. PLoS Genetics, 2008, 4, e1000315.	1.5	161
31	orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development (Cambridge), 2004, 131, 3457-3467.	1.2	160
32	The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. Journal of Cell Biology, 2010, 188, 21-28.	2.3	146
33	Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes JoubertAsyndrome. Nature Cell Biology, 2017, 19, 1178-1188.	4.6	138
34	Nephrocystin Specifically Localizes to the Transition Zone of Renal and Respiratory Cilia and Photoreceptor Connecting Cilia. Journal of the American Society of Nephrology: JASN, 2006, 17, 2424-2433.	3.0	133
35	Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii Journal of Cell Biology, 1995, 131, 427-440.	2.3	132
36	Characterization of mouse IFT complex B. Cytoskeleton, 2009, 66, 457-468.	4.4	131

#	Article	IF	CITATIONS
37	IFT20 Links Kinesin II with a Mammalian Intraflagellar Transport Complex That Is Conserved in Motile Flagella and Sensory Cilia. Journal of Biological Chemistry, 2003, 278, 34211-34218.	1.6	129
38	Chapter 5 Targeting Proteins to the Ciliary Membrane. Current Topics in Developmental Biology, 2008, 85, 115-149.	1.0	129
39	WormCat: An Online Tool for Annotation and Visualization of <i>Caenorhabditis elegans</i> Genome-Scale Data. Genetics, 2020, 214, 279-294.	1.2	125
40	Combined <scp>NGS</scp> Approaches Identify Mutations in the Intraflagellar Transport Gene <i>IFT140</i> in Skeletal Ciliopathies with Early Progressive Kidney Disease. Human Mutation, 2013, 34, 714-724.	1.1	120
41	IFT20 is required for opsin trafficking and photoreceptor outer segment development. Molecular Biology of the Cell, 2011, 22, 921-930.	0.9	114
42	The Chlamydomonas reinhardtii ODA3 Gene Encodes a Protein of the Outer Dynein Arm Docking Complex. Journal of Cell Biology, 1997, 137, 1069-1080.	2.3	110
43	Cooperative binding of Agrobacterium tumefaciens VirE2 protein to single-stranded DNA. Journal of Bacteriology, 1989, 171, 2573-2580.	1.0	108
44	A Dynein Light Intermediate Chain, D1bLIC, Is Required for Retrograde Intraflagellar Transport. Molecular Biology of the Cell, 2004, 15, 4382-4394.	0.9	106
45	Disruption of IFT Complex A Causes Cystic Kidneys without Mitotic Spindle Misorientation. Journal of the American Society of Nephrology: JASN, 2012, 23, 641-651.	3.0	103
46	The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. Journal of Cell Biology, 2012, 199, 151-167.	2.3	103
47	Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. Journal of Medical Genetics, 2005, 43, 62-73.	1.5	102
48	Primary Cilia Regulate Proliferation of Amplifying Progenitors in Adult Hippocampus: Implications for Learning and Memory. Journal of Neuroscience, 2011, 31, 9933-9944.	1.7	98
49	DC3, the 21-kDa Subunit of the Outer Dynein Arm-Docking Complex (ODA-DC), Is a Novel EF-Hand Protein Important for Assembly of Both the Outer Arm and the ODA-DC. Molecular Biology of the Cell, 2003, 14, 3650-3663.	0.9	95
50	DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia. PLoS Genetics, 2016, 12, e1005821.	1.5	92
51	The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. Journal of Cell Science, 2009, 122, 3070-3082.	1.2	91
52	Immune synapse targeting of specific recycling receptors by the intraflagellar transport system. Journal of Cell Science, 2014, 127, 1924-37.	1.2	91
53	IDENTIFICATION AND COMPARATIVE GENOMIC ANALYSIS OF SIGNALING AND REGULATORY COMPONENTS IN THE DIATOMTHALASSIOSIRA PSEUDONANA. Journal of Phycology, 2007, 43, 585-604.	1.0	87
54	Primary Cilia Regulate Branching Morphogenesis during Mammary Gland Development. Current Biology, 2010, 20, 731-737.	1.8	87

#	Article	IF	CITATIONS
55	Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton. PLoS Biology, 2013, 11, e1001720.	2.6	87
56	Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Molecular Biology of the Cell, 2015, 26, 4358-4372.	0.9	87
57	Constitutive mutations of Agrobacterium tumefaciens transcriptional activator virG. Journal of Bacteriology, 1992, 174, 4169-4174.	1.0	86
58	Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Molecular Reproduction and Development, 2005, 71, 444-452.	1.0	86
59	Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes. Journal of Medical Genetics, 2017, 54, 371-380.	1.5	85
60	Oda5p, a Novel Axonemal Protein Required for Assembly of the Outer Dynein Arm and an Associated Adenylate Kinase. Molecular Biology of the Cell, 2004, 15, 2729-2741.	0.9	80
61	Nephrocystin-4 controls ciliary trafficking of membrane and large soluble proteins at the transition zone. Journal of Cell Science, 2014, 127, 4714-27.	1.2	80
62	Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. DMM Disease Models and Mechanisms, 2011, 4, 43-56.	1.2	78
63	A unified taxonomy for ciliary dyneins. Cytoskeleton, 2011, 68, 555-565.	1.0	77
64	Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice. Molecular Biology of the Cell, 2016, 27, 3705-3716.	0.9	71
65	The LC7 Light Chains of Chlamydomonas Flagellar Dyneins Interact with Components Required for Both Motor Assembly and Regulation. Molecular Biology of the Cell, 2004, 15, 4633-4646.	0.9	64
66	Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea. Development (Cambridge), 2015, 142, 555-566.	1.2	63
67	The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling TCRs to the immune synapse. Journal of Cell Science, 2015, 128, 2541-52.	1.2	59
68	BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia. Journal of Cell Biology, 2017, 216, 2131-2150.	2.3	59
69	Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice. Developmental Biology, 2017, 432, 125-139.	0.9	59
70	LC2, the <i>Chlamydomonas</i> Homologue of the <i>t</i> Complex-encoded Protein Tctex2, Is Essential for Outer Dynein Arm Assembly. Molecular Biology of the Cell, 1999, 10, 3507-3520.	0.9	58
71	Forward and Reverse Genetic Analysis of Microtubule Motors in Chlamydomonas. Methods, 2000, 22, 285-298.	1.9	58
72	Ubiquitin links smoothened to intraflagellar transport to regulate Hedgehog signaling. Journal of Cell Biology, 2020, 219, .	2.3	56

#	Article	IF	CITATIONS
73	Characterization of the VirG binding site ofAgrobacterium tumefaciens. Nucleic Acids Research, 1990, 18, 6909-6913.	6.5	55
74	A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. Journal of Cell Science, 2019, 132, .	1.2	53
75	IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formationâ€. Biology of Reproduction, 2017, 96, 993-1006.	1.2	52
76	Genetic link between renal birth defects and congenital heart disease. Nature Communications, 2016, 7, 11103.	5.8	50
77	IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 386-391.	3.3	49
78	Differential Light Chain Assembly Influences Outer Arm Dynein Motor Function. Molecular Biology of the Cell, 2005, 16, 5661-5674.	0.9	47
79	Distinct functions for IFT140 and IFT20 in opsin transport. Cytoskeleton, 2014, 71, 302-310.	1.0	47
80	Photoreceptor Intersegmental Transport and Retinal Degeneration. Advances in Experimental Medicine and Biology, 2003, , 157-164.	0.8	46
81	Delineation of the regulatory region sequences ofAgrobacterium tumefaciens virB operon. Nucleic Acids Research, 1989, 17, 4541-4550.	6.5	45
82	Casein kinase 1δfunctions at the centrosome and Golgi to promote ciliogenesis. Molecular Biology of the Cell, 2014, 25, 1629-1640.	0.9	44
83	ANKS6 is the critical activator of NEK8 kinase in embryonic situs determination and organ patterning. Nature Communications, 2015, 6, 6023.	5.8	43
84	Intraflagellar transport is deeply integrated in hedgehog signaling. Molecular Biology of the Cell, 2018, 29, 1178-1189.	0.9	43
85	Intraflagellar transporter protein 140 (IFT140), a component of IFTâ€A complex, is essential for male fertility and spermiogenesis in mice. Cytoskeleton, 2018, 75, 70-84.	1.0	40
86	Comparative Genomics: Prediction of the Ciliary and Basal Body Proteome. Current Biology, 2004, 14, R575-R577.	1.8	38
87	A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome. Cilia, 2016, 5, 8.	1.8	37
88	Spatial distribution of intraflagellar transport proteins in vertebrate photoreceptors. Vision Research, 2008, 48, 413-423.	0.7	34
89	Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies. Human Molecular Genetics, 2015, 24, 3994-4005.	1.4	34
90	Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis. Development (Cambridge), 2015, 142, 2194-2202.	1.2	30

#	Article	IF	CITATIONS
91	Cilia in cystic kidney and other diseases. Cellular Signalling, 2020, 69, 109519.	1.7	30
92	Hypomorphic mutations of TRIP11 cause odontochondrodysplasia. JCI Insight, 2019, 4, .	2.3	30
93	Photoreceptor intersegmental transport and retinal degeneration: a conserved pathway common to motile and sensory cilia. Advances in Experimental Medicine and Biology, 2003, 533, 157-64.	0.8	30
94	Arf4 Is Required for Mammalian Development but Dispensable for Ciliary Assembly. PLoS Genetics, 2014, 10, e1004170.	1.5	28
95	Intraflagellar transport protein 74 is essential for spermatogenesis and male fertility in miceâ€. Biology of Reproduction, 2019, 101, 188-199.	1.2	28
96	Three Members of the LC8/DYNLL Family Are Required for Outer Arm Dynein Motor Function. Molecular Biology of the Cell, 2008, 19, 3724-3734.	0.9	27
97	Loss of Arf4 causes severe degeneration of the exocrine pancreas but not cystic kidney disease or retinal degeneration. PLoS Genetics, 2017, 13, e1006740.	1.5	27
98	Consensus nomenclature for dyneins and associated assembly factors. Journal of Cell Biology, 2022, 221, .	2.3	25
99	Role of cilia in structural birth defects: Insights from ciliopathy mutant mouse models. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 115-125.	3.6	24
100	Tethering of vesicles to the Golgi by GMAP210 controls LAT delivery to the immune synapse. Nature Communications, 2019, 10, 2864.	5.8	23
101	Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOCâ€1 and BORC complexes. Developmental Neurobiology, 2018, 78, 311-330.	1.5	21
102	E3 ubiquitin ligase Wwp1 regulates ciliary dynamics of the Hedgehog receptor Smoothened. Journal of Cell Biology, 2021, 220, .	2.3	21
103	Chapter 40 Assay of Chlamydomonas Phototaxis. Methods in Cell Biology, 1995, 47, 281-287.	0.5	20
104	Rab34 is necessary for early stages of intracellular ciliogenesis. Current Biology, 2021, 31, 2887-2894.e4.	1.8	19
105	Congenital Heart Defects and Ciliopathies Associated With Renal Phenotypes. Frontiers in Pediatrics, 2018, 6, 175.	0.9	18
106	A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Reports, 2022, 23, .	2.0	17
107	An insertional mutant ofChlamydomonas reinhardtii with defective microtubule positioning. , 1999, 44, 143-154.		16
108	Abnormal fertility, acrosome formation, IFT20 expression and localization in conditional <i>Gmap210</i> knockout mice. American Journal of Physiology - Cell Physiology, 2020, 318, C174-C190.	2.1	16

#	Article	IF	CITATIONS
109	lft25 is not a cystic kidney disease gene but is required for early steps of kidney development. Mechanisms of Development, 2018, 151, 10-17.	1.7	9
110	Biallelic pathogenic variants in roundabout guidance receptor 1 associate with syndromic congenital anomalies of the kidney and urinary tract. Kidney International, 2022, 101, 1039-1053.	2.6	8
111	The Chlamydomonas Flagellum as a Model for Human Ciliary Disease. , 2009, , 445-478.		6
112	Analysis of Ciliary Membrane Protein Dynamics Using SNAP Technology. Methods in Enzymology, 2013, 524, 195-204.	0.4	5
113	c-Jun N-terminal kinase (JNK) signaling contributes to cystic burden in polycystic kidney disease. PLoS Genetics, 2021, 17, e1009711.	1.5	5
114	Scanning Electron Microscopy to Examine Cells and Organs. Methods in Cell Biology, 2009, 91, 81-87.	0.5	4
115	Loss of the ciliary protein Chibby1 in mice leads to exocrine pancreatic degeneration and pancreatitis. Scientific Reports, 2021, 11, 17220.	1.6	4
116	Immunoprecipitation to Examine Protein Complexes. Methods in Cell Biology, 2009, 91, 135-142.	0.5	3
117	Role of Cilia and Left-Right Patterning in Congenital Heart Disease. , 2016, , 67-79.		3
118	Allelic Diversity in the Serum Amyloid A2 Gene and Amyloid A Amyloidosis in a Breeding Colony of Zebra Finches (<i>Taeniopygia guttata</i>). Comparative Medicine, 2019, 69, 425-431.	0.4	2
119	Loss of Primary Cilia Protein IFT20 Dysregulates Lymphatic Vessel Patterning in Development and Inflammation. Frontiers in Cell and Developmental Biology, 2021, 9, 672625.	1.8	2
120	Ciliary Doublet Microtubules at Near-Atomic Resolution. Cell, 2019, 179, 805-807.	13.5	1
121	Photoreceptors and Intraflagellar Transport. , 2004, , 109-132.		1
122	The primary cilium is a sensory organelle that regulates growth control and tissue homeostasis. FASEB Journal, 2006, 20, A437.	0.2	1
123	Cover Image, Volume 75, Issue 2. Cytoskeleton, 2018, 75, C1-C1.	1.0	0
124	X Caps the Phosphate for Phospho-Rab GTPase Recognition in Ciliogenesis and Parkinson's Disease. Structure, 2020, 28, 385-387.	1.6	0
125	Proteomics of Motile & Primary Cilia: Clues to Human Disease. FASEB Journal, 2006, 20, A437.	0.2	0
126	Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel–Gruber syndrome. Journal of Cell Science, 2011, 124, e1-e1.	1.2	0

#	Article	IF	CITATIONS
127	The Development and Characterization of IFT20 knockout Mice. FASEB Journal, 2019, 33, 461.9.	0.2	Ο
128	Primary cilia on LECs play a crucial role in lymphatic vasculature development and remodeling. FASEB Journal, 2019, 33, 657.3.	0.2	0
129	MO047: Biallelic pathogenic variants in ROBO1 associate with syndromic CAKUT. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0