
Geev Mokryani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5403885/publications.pdf Version: 2024-02-01

CEEV MORDVANI

#	Article	IF	CITATIONS
1	Detection and Diagnosis of Stator and Rotor Electrical Faults for Three-Phase Induction Motor via Wavelet Energy Approach. Electronics (Switzerland), 2022, 11, 1253.	1.8	3
2	Active Distribution Networks Planning Considering Multi-DG Configurations and Contingency Analysis. Energies, 2021, 14, 4361.	1.6	10
3	Flyback Photovoltaic Micro-Inverter with a Low Cost and Simple Digital-Analog Control Scheme. Energies, 2021, 14, 4239.	1.6	12
4	Voltage Unbalance Mitigation in Low Voltage Distribution Networks using Time Series Three-Phase Optimal Power Flow. , 2021, , .		2
5	Two-Stage Stochastic Model to Invest in Distributed Generation Considering the Long-Term Uncertainties. Energies, 2021, 14, 5694.	1.6	2
6	Active Distribution Network Operation: A Market-Based Approach. IEEE Systems Journal, 2020, 14, 1405-1416.	2.9	25
7	Distribution Network Reconfiguration Considering Security-Constraint and Multi-DG Configurations. , 2020, , .		1
8	Smart grid and energy district mutual interactions with demand response programs. IET Energy Systems Integration, 2020, 2, 1-8.	1.1	27
9	A Proposed IoT Architecture for Effective Energy Management in Smart Microgrids. , 2020, , .		8
10	Comparative Study of Shortterm Electricity Price Forecasting Models to Optimise Battery Consumption. , 2020, , .		0
11	Multi-objective day-ahead scheduling of microgrids using modified grey wolf optimizer algorithm. Journal of Intelligent and Fuzzy Systems, 2019, 36, 2857-2870.	0.8	13
12	Environment driven consumer EC model incorporating complexities of consumer body dynamics. IET Energy Systems Integration, 2019, 1, 53-64.	1.1	3
13	Planning of HMG with high penetration of renewable energy sources. IET Renewable Power Generation, 2019, 13, 1724-1730.	1.7	12
14	Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review. International Journal of Electrical Power and Energy Systems, 2019, 109, 139-159.	3.3	120
15	Comprehensive review of VPPs planning, operation and scheduling considering the uncertainties related to renewable energy sources. IET Energy Systems Integration, 2019, 1, 147-157.	1.1	57
16	A Stochastic Market-based Approach for Operation of Active Distribution Networks. , 2019, , .		2
17	Planning and operation of LV distribution networks: a comprehensive review. IET Energy Systems Integration, 2019, 1, 133-146.	1.1	32
18	Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices. Applied Energy, 2018, 216, 367-381.	5.1	61

GEEV MOKRYANI

#	Article	IF	CITATIONS
19	Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment. Applied Energy, 2018, 220, 713-722.	5.1	58
20	A Robust Optimization Approach for Active and Reactive Power Management in Smart Distribution Networks Using Electric Vehicles. IEEE Systems Journal, 2018, 12, 2699-2710.	2.9	78
21	Deterministic approach for active distribution networks planning with high penetration of wind and solar power. Renewable Energy, 2017, 113, 942-951.	4.3	43
22	Active distribution networks planning with high penetration of wind power. Renewable Energy, 2017, 104, 40-49.	4.3	41
23	Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review. Renewable and Sustainable Energy Reviews, 2017, 72, 1177-1198.	8.2	149
24	Stochastic approach for active and reactive power management in distribution networks. , 2017, , .		0
25	Active Distribution Networks Operation Within a Distribution Market Environment. , 2017, , 107-118.		2
26	Probabilistic method for the operation of threeâ€phase unbalanced active distribution networks. IET Renewable Power Generation, 2016, 10, 944-954.	1.7	37
27	Active distribution networks planning with integration of demand response. Solar Energy, 2015, 122, 1362-1370.	2.9	47
28	Evaluating the Benefits of Optimal Allocation of Wind Turbines for Distribution Network Operators. IEEE Systems Journal, 2015, 9, 629-638.	2.9	28
29	Strategic placement of distribution network operator owned wind turbines by using marketâ€based optimal power flow. IET Generation, Transmission and Distribution, 2014, 8, 281-289.	1.4	18
30	Assessing Wind Turbines Placement in a Distribution Market Environment by Using Particle Swarm Optimization. IEEE Transactions on Power Systems, 2013, 28, 3852-3864.	4.6	49
31	Fault ride-through enhancement of wind turbines in distribution networks. Journal of Ambient Intelligence and Humanized Computing, 2013, 4, 605-611.	3.3	7
32	Probabilistic Assessment of the Impact of Wind Energy Integration Into Distribution Networks. IEEE Transactions on Power Systems, 2013, 28, 4209-4217.	4.6	50
33	Improving Fault Ride-Through Capability of Variable Speed Wind Turbines in Distribution Networks. IEEE Systems Journal, 2013, 7, 713-722.	2.9	36
34	Optimal wind turbines placement within a distribution market environment. Applied Soft Computing Journal, 2013, 13, 4038-4046.	4.1	21
35	Evaluating the integration of wind power into distribution networks by using Monte Carlo simulation. International Journal of Electrical Power and Energy Systems, 2013, 53, 244-255.	3.3	39
36	Combined Monte Carlo simulation and OPF for wind turbines integration into distribution networks. Electric Power Systems Research, 2013, 103, 37-48.	2.1	31

GEEV MOKRYANI

#	Article	IF	CITATIONS
37	Optimal allocation of wind turbines in microgrids by using genetic algorithm. Journal of Ambient Intelligence and Humanized Computing, 2013, 4, 613-619.	3.3	30
38	Combined Monte Carlo simulation and OPF to evaluate the market impact of wind energy. , 2012, , .		2
39	A Fuzzy Logic Controller to Increase Fault Ride-Through Capability of Variable Speed Wind Turbines. Applied Computational Intelligence and Soft Computing, 2012, 2012, 1-10.	1.6	4
40	Optimal Placement of Wind Turbines by using Genetic Algorithm and Social Welfare Assessment. , 2012, , .		0
41	Fault Ride-Through Capability Enhancement by using Fuzzy Control. , 2012, , .		0
42	Optimal allocation of wind turbines in distribution systems based on social welfare evaluation. , 2011, , .		3
43	A novel fuzzy system for wind turbines reactive power control. , 2011, , .		1
44	Social welfare maximization for optimal allocation of wind turbines in distribution systems. , 2011, , .		3
45	A fuzzy controller for improving Fault Ride-Through capability of wind turbines. , 2011, , .		1
46	Identification of ferroresonance based on S-transform and support vector machine. Simulation Modelling Practice and Theory, 2010, 18, 1412-1424.	2.2	23
47	Detection of inrush current using S-Transform and Probabilistic Neural Network. , 2010, , .		6
48	Detection of inrush current using S-Transform and Competitive Neural Network. , 2010, , .		7
49	Detection of inrush current based on wavelet transform and LVQ neural network. , 2010, , .		5
50	Inrush current detection based on wavelet transform and Probabilistic Neural Network. , 2010, , .		4
51	An overview on the smart grid concept. , 2010, , .		78
52	ldentification of Ferroresonance based on wavelet transform and artificial neural network. European Transactions on Electrical Power, 2009, 19, 474-486.	1.0	12
53	Wavelet Based Kernel Fisher Classifier For Ferroresonance Identification. , 2009, , .		4

7

#	Article	IF	CITATIONS
55	Application of wavelet transform and MLP neural network for Ferroresonance identification. , 2008, ,		17
56	Identification of ferroresonance based on wavelet transform and artificial neural networks. , 2007, , .		9