
Long Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5403584/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An odyssey of lithium metal anode in liquid lithium–sulfur batteries. Chinese Chemical Letters, 2022, 33, 4421-4427.	9.0	37
2	Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. Journal of Energy Chemistry, 2021, 55, 80-91.	12.9	57
3	Redox of Dual-Radical Intermediates in a Methylene-Linked Covalent Triazine Framework for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 514-521.	8.0	40
4	Coupling a Three-Dimensional Nanopillar and Robust Film to Guide Li-Ion Flux for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 45416-45425.	8.0	8
5	Configuring solid-state batteries to power electric vehicles: a deliberation on technology, chemistry and energy. Chemical Communications, 2021, 57, 12587-12594.	4.1	18
6	Li-Rich Antiperovskite/Nitrile Butadiene Rubber Composite Electrolyte for Sheet-Type Solid-State Lithium Metal Battery. Frontiers in Chemistry, 2021, 9, 744417.	3.6	8
7	Rationalizing Electrocatalysis of Li–S Chemistry by Mediator Design: Progress and Prospects. Advanced Energy Materials, 2020, 10, 1901075.	19.5	296
8	Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries. Chemical Communications, 2020, 56, 1251-1254.	4.1	36
9	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1, .	10.7	186
10	Cobalt-Doped NiS ₂ Micro/Nanostructures with Complete Solid Solubility as High-Performance Cathode Materials for Actual High-Specific-Energy Thermal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 50377-50387.	8.0	39
11	Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations. Energy, 2020, 201, 117718.	8.8	43
12	Graphene-based Fe-coordinated framework porphyrin as an interlayer for lithium–sulfur batteries. Materials Chemistry Frontiers, 2019, 3, 615-619.	5.9	47
13	Current-density dependence of Li ₂ S/Li ₂ S ₂ growth in lithium–sulfur batteries. Energy and Environmental Science, 2019, 12, 2976-2982.	30.8	102
14	Nonuniform Redistribution of Sulfur and Lithium upon Cycling: Probing the Origin of Capacity Fading in Lithium–Sulfur Pouch Cells. Energy Technology, 2019, 7, 1900111.	3.8	32
15	Expediting redox kinetics of sulfur species by atomicâ€scale electrocatalysts in lithium–sulfur batteries. InformaÄnÃ-Materiály, 2019, 1, 533-541.	17.3	261
16	Three-dimensional matrix for lithium metal anode for next-generation rechargeable batteries: Structure design and interface engineering. Journal of Energy Chemistry, 2019, 33, 167-168.	12.9	28
17	Towards full demonstration of high areal loading sulfur cathode in lithium–sulfur batteries. Journal of Energy Chemistry, 2019, 39, 17-22.	12.9	87
18	Conductive and Catalytic Tripleâ€Phase Interfaces Enabling Uniform Nucleation in Highâ€Rate Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1802768.	19.5	508

LONG KONG

#	Article	IF	CITATIONS
19	Porphyrin Organic Framework Hollow Spheres and Their Applications in Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1707483.	21.0	145
20	Porphyrinâ€Derived Grapheneâ€Based Nanosheets Enabling Strong Polysulfide Chemisorption and Rapid Kinetics in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800849.	19.5	211
21	A Bifunctional Perovskite Promoter for Polysulfide Regulation toward Stable Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, 1705219.	21.0	276
22	A Review of Advanced Energy Materials for Magnesium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 100-112.	12.8	112
23	Solventâ€Engineered Scalable Production of Polysulfideâ€Blocking Shields to Enhance Practical Lithium–Sulfur Batteries. Small Methods, 2018, 2, 1800100.	8.6	23
24	Porphyrin Organic Frameworks: Porphyrin Organic Framework Hollow Spheres and Their Applications in Lithium-Sulfur Batteries (Adv. Mater. 23/2018). Advanced Materials, 2018, 30, 1870160.	21.0	4
25	Synchronous immobilization and conversion of polysulfides on a VO ₂ –VN binary host targeting high sulfur load Li–S batteries. Energy and Environmental Science, 2018, 11, 2620-2630.	30.8	465
26	Synthesis and electrochemical characterization of porous nanostructured vanadium pentoxide with mesopores and macropores. Materials Letters, 2017, 190, 266-269.	2.6	4
27	Beaver-dam-like membrane: A robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li-S batteries. Energy Storage Materials, 2017, 8, 153-160.	18.0	86
28	Synthesis and characterization of sulfur/carbon/porous nanostructured V 2 O 5 composite cathodes for lithium sulfur batteries. Advanced Powder Technology, 2017, 28, 1411-1417.	4.1	19
29	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28, 2180-2194.	9.0	176
30	Review of nanostructured current collectors in lithium–sulfur batteries. Nano Research, 2017, 10, 4027-4054.	10.4	91
31	Correlation between porous structure and electrochemical properties of porous nanostructured vanadium pentoxide synthesized by novel spray pyrolysis. Journal of Power Sources, 2016, 312, 36-44.	7.8	22
32	Synthesis and characterization of sulfur–carbon–vanadium pentoxide composites for improved electrochemical properties of lithium–sulfur batteries. Materials Research Bulletin, 2016, 73, 164-170.	5.2	32