
Silvia Perez-Silanes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5403357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorganic and Medicinal Chemistry, 2022, 58, 116577.	1.4	21
2	Potential of sulfur-selenium isosteric replacement as a strategy for the development of new anti-chagasic drugs. Acta Tropica, 2022, 233, 106547.	0.9	4
3	Design and synthesis of Mannich base-type derivatives containing imidazole and benzimidazole as lead compounds for drug discovery in Chagas Disease. European Journal of Medicinal Chemistry, 2021, 223, 113646.	2.6	7
4	Selenium as an interesting option for the treatment of Chagas disease: A review. European Journal of Medicinal Chemistry, 2020, 206, 112673.	2.6	27
5	The role of imidazole and benzimidazole heterocycles in Chagas disease: A review. European Journal of Medicinal Chemistry, 2020, 206, 112692.	2.6	53
6	Rational modification of Mannich base-type derivatives as novel antichagasic compounds: Synthesis, in vitro and in vivo evaluation. Bioorganic and Medicinal Chemistry, 2019, 27, 3902-3917.	1.4	17
7	Antichagasic profile of a Series of Mannich Baseâ€Type Derivatives: Design, Synthesis, <i>inâ€vitro</i> Evaluation, and Computational Studies Involving Iron Superoxide Dismutase. ChemistrySelect, 2019, 4, 8112-8121.	0.7	3
8	A step towards development of promising trypanocidal agents: Synthesis, characterization and inÂvitro biological evaluation of ferrocenyl Mannich base-type derivatives. European Journal of Medicinal Chemistry, 2019, 163, 569-582.	2.6	11
9	Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. European Journal of Medicinal Chemistry, 2018, 155, 459-482.	2.6	25
10	Second Generation of Mannich Base-Type Derivatives with <i>in Vivo</i> Activity against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2018, 61, 5643-5663.	2.9	32
11	Library of Seleno-Compounds as Novel Agents against Leishmania Species. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	27
12	A Comparative Study of Conventional and Microwaveâ€Assisted Synthesis of Quinoxaline 1,4â€diâ€ <i>N</i> â€oxide <i>N</i> â€ocylhydrazones Derivatives Designed as Antitubercular Drug Candidates. Journal of Heterocyclic Chemistry, 2017, 54, 2380-2388.	1.4	6
13	Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. Journal of Medicinal Chemistry, 2017, 60, 8647-8660.	2.9	43
14	Development, validation and application of a GC–MS method for the simultaneous detection and quantification of neutral lipid species in Trypanosoma cruzi. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1061-1062, 225-232.	1.2	9
15	<i>In vitro</i> antileishmanial activity and iron superoxide dismutase inhibition of arylamine Mannich base derivatives. Parasitology, 2017, 144, 1783-1790.	0.7	11
16	Docking Study on T. cruzi Trypanothione Reductase and Iron-Superoxide Dismutase Isoforms of a Series of Imidazole-Based Derivatives as an Approach towards the Design of New Potential Inhibitors. Proceedings (mdpi), 2017, 1, 651.	0.2	0
17	Biological Evaluation of Arylamine Mannich Base Derivatives with Potent In Vivo Activity as Potent Antichagasic Agents. Proceedings (mdpi), 2017, 1, .	0.2	0
18	Trypanothione Reductase and Superoxide Dismutase as Current Drug Targets for Trypanosoma cruzi: An Overview of Compounds with Activity against Chagas Disease. Current Medicinal Chemistry, 2017, 24, 1066-1138.	1.2	43

SILVIA PEREZ-SILANES

#	Article	IF	CITATIONS
19	Synthesis and In Vitro Antiparasitic Activity of Novel Arylamine Mannich Base-Type Derivatives against Trypanosoma cruzi and Leishmania spp Proceedings (mdpi), 2017, 1, .	0.2	Ο
20	Challenges in Chagas Disease Drug Discovery: A Review. Current Medicinal Chemistry, 2016, 23, 3154-3170.	1.2	46
21	Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 184-198.	1.4	16
22	In Vitro and in Vivo Anti-Trypanosoma cruziActivity of New Arylamine Mannich Base-Type Derivatives. Journal of Medicinal Chemistry, 2016, 59, 10929-10945.	2.9	30
23	Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2188-2193.	1.0	25
24	Synthesis and biological evaluation of quinoxaline di- N -oxide derivatives with in vitro trypanocidal activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 903-906.	1.0	16
25	Synthesis, Biological Evaluation and Structure-Activity Relationships of New Quinoxaline Derivatives as Anti-Plasmodium falciparum Agents. Molecules, 2014, 19, 2166-2180.	1.7	35
26	Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. European Journal of Medicinal Chemistry, 2013, 66, 324-334.	2.6	44
27	Cyclic Voltammetric Study of Some Anti-Chagas-Active 1,4-Dioxidoquinoxalin-2-yl Ketone Derivatives. Helvetica Chimica Acta, 2013, 96, 217-227.	1.0	9
28	New Amide Derivatives of Quinoxaline 1,4-di-N-Oxide with Leishmanicidal and Antiplasmodial Activities. Molecules, 2013, 18, 4718-4727.	1.7	36
29	New Quinoxaline Derivatives as Potential MT1 and MT2 Receptor Ligands. Molecules, 2012, 17, 7737-7757.	1.7	9
30	Antiplasmodial and Leishmanicidal Activities of 2-Cyano-3-(4-phenylpiperazine-1-carboxamido) Quinoxaline 1,4-Dioxide Derivatives. Molecules, 2012, 17, 9451-9461.	1.7	33
31	Novel sulfonylurea derivatives as H3 receptor antagonists. Preliminary SAR studies. European Journal of Medicinal Chemistry, 2012, 52, 1-13.	2.6	15
32	3-Trifluoromethylquinoxaline <i>N</i> , <i>N</i> ′-Dioxides as Anti-Trypanosomatid Agents. Identification of Optimal Anti- <i>T. cruzi</i> Agents and Mechanism of Action Studies. Journal of Medicinal Chemistry, 2011, 54, 3624-3636.	2.9	49
33	Novel Benzo[<i>b</i>]thiophene Derivatives as New Potential Antidepressants with Rapid Onset of Action. Journal of Medicinal Chemistry, 2011, 54, 3086-3090.	2.9	85
34	Studies on Log Po/w of Quinoxaline di-N-Oxides: A Comparison of RP-HPLC Experimental and Predictive Approaches. Molecules, 2011, 16, 7893-7908.	1.7	7
35	Synthesis and Biological Evaluation of New Quinoxaline Derivatives as Antioxidant and Antiâ€Inflammatory Agents. Chemical Biology and Drug Design, 2011, 77, 255-267.	1.5	75
36	Trypanocidal properties, structure–activity relationship and computational studies of quinoxaline 1,4-di-N-oxide derivatives. Experimental Parasitology, 2011, 127, 745-751.	0.5	40

SILVIA PEREZ-SILANES

#	Article	IF	CITATIONS
37	Aryl piperazine and pyrrolidine as antimalarial agents. Synthesis and investigation of structure–activity relationships. Experimental Parasitology, 2011, 128, 97-103.	0.5	33
38	New 1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-Mycobacterium tuberculosis agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3699-3703.	1.0	67
39	New salicylamide and sulfonamide derivatives of quinoxaline 1,4-di-N-oxide with antileishmanial and antimalarial activities. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4498-4502.	1.0	52
40	1,4-Di-N-oxide quinoxaline-2-carboxamide: Cyclic voltammetry and relationship between electrochemical behavior, structure and anti-tuberculosis activity. Electrochimica Acta, 2011, 56, 3270-3275.	2.6	29
41	Quinoxaline 1,4-di-N-Oxide and the Potential for Treating Tuberculosis. Infectious Disorders - Drug Targets, 2011, 11, 196-204.	0.4	28
42	Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. European Journal of Medicinal Chemistry, 2010, 45, 4418-4426.	2.6	49
43	New 3-methylquinoxaline-2-carboxamide 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents. Bioorganic and Medicinal Chemistry, 2010, 18, 2713-2719.	1.4	64
44	Building a MCHR1 homology model provides insight into the receptor–antagonist contacts that are important for the development of new anti-obesity agents. Bioorganic and Medicinal Chemistry, 2010, 18, 7365-7379.	1.4	8
45	New 1-Aryl-3-Substituted Propanol Derivatives as Antimalarial Agents. Molecules, 2009, 14, 4120-4135.	1.7	16
46	Heterocyclic-2-carboxylic Acid (3-Cyano-1,4-di-N-oxidequinoxalin-2-yl)amide Derivatives as Hits for the Development of Neglected Disease Drugs. Molecules, 2009, 14, 2256-2272.	1.7	41
47	Selective activity against Mycobacterium tuberculosis of new quinoxaline 1,4-di-N-oxides. Bioorganic and Medicinal Chemistry, 2009, 17, 385-389.	1.4	112
48	Synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazones, designed as cruzain inhibitors candidates. Bioorganic and Medicinal Chemistry, 2009, 17, 641-652.	1.4	94
49	Synthesis and structure–activity relationship of 3-phenylquinoxaline 1,4-di-N-oxide derivatives as antimalarial agents. European Journal of Medicinal Chemistry, 2008, 43, 1903-1910.	2.6	53
50	Antiplasmodial structure–activity relationship of 3-trifluoromethyl-2-arylcarbonylquinoxaline 1,4-di-N-oxide derivatives. Experimental Parasitology, 2008, 118, 25-31.	0.5	23
51	Efficacy of Quinoxaline-2-Carboxylate 1,4-Di- N -Oxide Derivatives in Experimental Tuberculosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 3321-3326.	1.4	46
52	In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide. Journal of Antimicrobial Chemotherapy, 2008, 62, 547-554.	1.3	55
53	New Amide Derivatives as Melanin-concentrating Hormone Receptor 1 Antagonists for the Treatment of Obesity. Arzneimittelforschung, 2008, 58, 585-591.	0.5	0
54	Melanin-Concentrating Hormone Receptor 1 Antagonists: A New Perspective for the Pharmacologic Treatment of Obesity. Current Medicinal Chemistry, 2008, 15, 1025-1043.	1.2	50

#	Article	IF	CITATIONS
55	An easy and direct method for the synthesis of 1,2,4-triazole derivatives through carboxylic acids and hydrazinophthalazine. Quimica Nova, 2008, 31, 536-538.	0.3	3
56	Unexpected Reduction of Ethyl 3-Phenylquinoxaline-2- carboxylate 1,4-Di-N-oxide Derivatives by Amines. Molecules, 2008, 13, 78-85.	1.7	7
57	Substitutions of Fluorine Atoms and Phenoxy Groups in the Synthesis of Quinoxaline 1,4-di-N-oxide Derivatives. Molecules, 2008, 13, 86-95.	1.7	7

Anti-leishmanial and structure-activity relationship of ring substituted 3-phenyl-1-(1,4-di-N-oxide) Tj ETQq0 0 0 rgBT $_{0.8}^{10}$ Verlock 10 Tf 50 6

		010	10
59	Synthesis and Antiplasmodial Activity of 3-Furyl and 3-Thienylquinoxaline-2-carbonitrile 1,4-Di-N-oxide Derivatives. Molecules, 2008, 13, 69-77.	1.7	32
60	Synthesis and Biological Evaluation of New 2-Arylcarbonyl-3-trifluoromethylquinoxaline 1,4-Di-N-oxide Derivatives and Their Reduced Analogues. Journal of Medicinal Chemistry, 2007, 50, 5485-5492.	2.9	53
61	Novel series of substituted biphenylmethyl urea derivatives as MCH-R1 antagonists for the treatment of obesity. Bioorganic and Medicinal Chemistry, 2007, 15, 3896-3911.	1.4	11
62	Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6439-6443.	1.0	124
63	Comparative use of solvent-free KF-A12O3and K2CO3in acetone in the synthesis of quinoxaline 1,4-dioxide derivatives designed as antimalarial drug candidates. Journal of Heterocyclic Chemistry, 2005, 42, 1381-1385.	1.4	12
64	Synthesis of New Thiophene and Benzo[b]thiophene Hydrazide Derivatives as Human NPY Y5 Antagonists ChemInform, 2004, 35, no.	0.1	0
65	Synthesis and Evaluation of New Arylsulfonamidomethylcyclohexyl Derivatives as Human Neuropeptide Y Y5 Receptor Antagonists for the Treatment of Obesity ChemInform, 2004, 35, no.	0.1	0
66	Synthesis and evaluation of new hydrazide derivatives as neuropeptide Y Y5 receptor antagonists for the treatment of obesity. Bioorganic and Medicinal Chemistry, 2004, 12, 4717-4723.	1.4	12
67	Synthesis and evaluation of new arylsulfonamidomethylcyclohexyl derivatives as human neuropeptide Y Y5 receptor antagonists for the treatment of obesity. European Journal of Medicinal Chemistry, 2004, 39, 49-58.	2.6	9
68	Synthesis of new thiophene and benzo[b]thiophene hydrazide derivatives as human NPY Y5 antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 597-599.	1.0	17
69	Synthesis and Molecular Modeling of New 1-Aryl-3-[4-arylpiperazin-1-yl]-1-propane Derivatives with High Affinity at the Serotonin Transporter and at 5-HT1AReceptors. Journal of Medicinal Chemistry, 2002, 45, 4128-4139.	2.9	47
70	New 1-Aryl-3-(4-arylpiperazin-1-yl)propane Derivatives, with Dual Action at 5-HT1ASerotonin Receptors and Serotonin Transporter, as a New Class of Antidepressants. Journal of Medicinal Chemistry, 2001, 44, 418-428.	2.9	73
71	New 3-[4-(aryl)piperazin-1-yl]-1-(benzo[b]thiophen-3-yl)propane derivatives with dual action at 5-HT1A serotonin receptors and serotonin transporter as a new class of antidepressants. European Journal of Medicinal Chemistry, 2001, 36, 55-61.	2.6	43
72	Synthesis of new 5â€substitutedbenzo[<i>b</i>]thiophene derivatives. Journal of Heterocyclic Chemistry, 2001, 38, 1025-1030.	1.4	31

#	Article	IF	CITATIONS
73	Design, synthesis and biological evaluation of new 3-[(4-aryl)piperazin-1-yl]-1-arylpropane derivatives as potential antidepressants with a dual mode of action: serotonin reuptake inhibition and 5-HT1A receptor antagonism. Il Farmaco, 2000, 55, 345-353.	0.9	37
74	Synthesis of new indoylâ€1,3,4â€oxadiazole and oxadiazine derivatives. Potential monoamine oxidase inhibitor activity. Journal of Heterocyclic Chemistry, 1997, 34, 1527-1533.	1.4	16