Jaco Huisman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5403020/publications.pdf

Version: 2024-02-01

623574 794469 1,343 29 14 19 citations g-index h-index papers 29 29 29 1271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Products that go round: exploring product life extension through design. Journal of Cleaner Production, 2014, 69, 10-16.	4.6	479
2	Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis. Waste Management, 2013, 33, 2397-2407.	3.7	206
3	The Best-of-2-Worlds philosophy: Developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies. Waste Management, 2012, 32, 2134-2146.	3.7	192
4	Quotes for environmentally weighted recyclability (QWERTY): Concept of describing product recyclability in terms of environmental value. International Journal of Production Research, 2003, 41, 3649-3665.	4.9	75
5	Approaches to responsible sourcing in mineral supply chains. Resources, Conservation and Recycling, 2019, 145, 389-398.	5.3	56
6	Take back and treatment of discarded electronics: a scientific update. Frontiers of Environmental Science and Engineering, 2013, 7, 475-482.	3.3	35
7	Eco-efficiency considerations on the end-of-life of consumer electronic products. IEEE Transactions on Electronics Packaging Manufacturing, 2004, 27, 9-25.	1.6	33
8	Forecasting waste compositions: A case study on plastic waste of electronic display housings. Waste Management, 2015, 46, 28-39.	3.7	31
9	One WEEE, many species: lessons from the European experience. Waste Management and Research, 2011, 29, 954-962.	2.2	30
10	Modelling the levels of historic waste electrical and electronic equipment in Ireland. Resources, Conservation and Recycling, 2018, 131, 1-16.	5.3	30
11	Novel indicators to better monitor the collection and recovery of (critical) raw materials in WEEE: Focus on screens. Resources, Conservation and Recycling, 2020, 157, 104772.	5.3	29
12	Eco-Efficiency of Take-Back and Recycling, a Comprehensive Approach. IEEE Transactions on Electronics Packaging Manufacturing, 2006, 29, 83-90.	1.6	21
13	Too Big to Fail, Too Academic to Function. Journal of Industrial Ecology, 2013, 17, 172-174.	2.8	21
14	ProSUM: Prospecting secondary Raw Materials in the Urban Mine and Mining Wastes. , 2016, , .		19
15	What gets measured gets managed – does it? Uncovering the waste electrical and electronic equipment flows in the European Union. Resources, Conservation and Recycling, 2022, 181, 106222.	5.3	17
16	Material system analysis: A novel multilayer system approach to correlate EU flows and stocks of Liâ€ion batteries and their raw materials. Journal of Industrial Ecology, 2022, 26, 1261-1276.	2.8	13
17	Where are WEEE now? Lessons from WEEE: Will EPR work for the US?. Electronics and the Environment, IEEE International Symposium on, 2007, , .	0.0	11
18	Management of WEEE & Description of the Environment, IEEE International Symposium on, 2007, , .	0.0	11

#	Article	IF	CITATIONS
19	Where did WEEE go wrong in Europe? Practical and academic lessons for the US., 2006,,.		10
20	Methodology to prospect electronics compositions and flows, illustrated by material trends in printed circuit boards. Journal of Cleaner Production, 2021, 307, 127164.	4.6	7
21	Eco-efficiency as a road-mapping instrument for WEEE implementation. Progress in Industrial Ecology, 2008, 5, 30.	0.1	5
22	Compliance Key Factors of the EU WEEE Directive. , 2006, , .		4
23	Stocks and flows of critical materials in batteries: Data collection and data uses. , 2016, , .		3
24	The QWERTY concept, a powerful concept for evaluating the environmental consequences of end-of-life processing of consumer electronic products. , 0 , , .		2
25	The e-waste development cycle – part I, introduction and country status. , 2019, , 17-55.		2
26	The e-waste development cycle, partÂlllâ€"policy & legislation, business & finance, and technologiesÂ& skills. , 2019, , 93-141.		1
27	Projecting the split between historic and non-historic WEEE in Ireland. , 2016, , .		O
28	The e-waste development cycle, part IIâ€"impact assessment of collection and treatment. , 2019, , 57-92.		0
29	Implementation road map and conditions for success., 2019,, 143-184.		O