Anupom Borah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5402934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Garcinol blocks motor behavioural deficits by providing dopaminergic neuroprotection in MPTP mouse model of Parkinson's disease: involvement of anti-inflammatory response. Experimental Brain Research, 2022, 240, 113-122.	0.7	12
2	Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Reviews and Reports, 2022, 18, 821-838.	1.7	23
3	Post-stroke Impairment of the Blood–Brain Barrier and Perifocal Vasogenic Edema Is Alleviated by Endovascular Mesenchymal Stem Cell Administration: Modulation of the PKCÎ′/MMP9/AQP4-Mediated Pathway. Molecular Neurobiology, 2022, 59, 2758-2775.	1.9	14
4	Garcinia morella extract confers dopaminergic neuroprotection by mitigating mitochondrial dysfunctions and inflammation in mouse model of Parkinson's disease. Metabolic Brain Disease, 2022, 37, 1887-1900.	1.4	2
5	Cerebroâ€renal interaction and stroke. European Journal of Neuroscience, 2021, 53, 1279-1299.	1.2	15
6	Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology, 2021, 162, 160-178.	2.0	12
7	Intra-arterial Stem Cell Therapy Diminishes Inflammasome Activation After Ischemic Stroke: a Possible Role of Acid Sensing Ion Channel 1a. Journal of Molecular Neuroscience, 2021, 71, 419-426.	1.1	13
8	Polymeric nanomaterials in neuroscience. , 2021, , 291-307.		0
9	Post-stroke depression: Chaos to exposition. Brain Research Bulletin, 2021, 168, 74-88.	1.4	22
10	In search of drugs to alleviate suppression of the host's innate immune responses against SARS-CoV-2 using a molecular modeling approach. In Silico Pharmacology, 2021, 9, 26.	1.8	5
11	Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochemistry International, 2021, 148, 105068.	1.9	13
12	Endovascular Stem Cell Therapy Post Stroke Rescues Neurons from Endoplasmic Reticulum Stress-Induced Apoptosis by Modulating Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling. ACS Chemical Neuroscience, 2021, 12, 3745-3759.	1.7	13
13	Quercetin-induced amelioration of deltamethrin stress in freshwater teleost, Channa punctata: Multiple biomarker analysis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 227, 108626.	1.3	11
14	Ameliorative effects of Garcinia pedunculata fruit extract on adenine-induced chronic kidney disease in mice, and the role of Garcinol: relevance to hyperuricemia and urolithiasis. Advances in Traditional Medicine, 2020, 20, 255-261.	1.0	2
15	Inhibitory potential of plant secondary metabolites on anti-Parkinsonian drug targets: Relevance to pathophysiology, and motor and non-motor behavioural abnormalities. Medical Hypotheses, 2020, 137, 109544.	0.8	9
16	Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochemistry International, 2020, 140, 104823.	1.9	25
17	Molecular Pathogenesis and Interventional Strategies for Alzheimer's Disease: Promises and Pitfalls. ACS Pharmacology and Translational Science, 2020, 3, 472-488.	2.5	21
18	Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Translational Stroke Research, 2020, 11, 1185-1202.	2.3	190

#	Article	IF	CITATIONS
19	Migraine and Ischemic Stroke: Deciphering the Bidirectional Pathway. ACS Chemical Neuroscience, 2020, 11, 1525-1538.	1.7	10
20	Natural Products and Their Therapeutic Effect on Autism Spectrum Disorder. Advances in Neurobiology, 2020, 24, 601-614.	1.3	6
21	Role of Oxidative Stress and Antioxidants in Autism. Advances in Neurobiology, 2020, 24, 193-206.	1.3	67
22	Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Current Topics in Medicinal Chemistry, 2020, 20, 1154-1168.	1.0	10
23	Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums. ACS Chemical Neuroscience, 2019, 10, 44-57.	1.7	22
24	Therapeutic implications of anti-inflammatory natural products in Alzheimer's disease. , 2019, , 241-258.		6
25	Behavioral and Biochemical Implications of Dendrimeric Rivastigmine in Memory-Deficit and Alzheimer's Induced Rodents. ACS Chemical Neuroscience, 2019, 10, 3789-3795.	1.7	16
26	Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences, 2019, 1457, 41-60.	1.8	64
27	Lactoferrin Coupled Lower Generation PAMAM Dendrimers for Brain Targeted Delivery of Memantine in Aluminum-Chloride-Induced Alzheimer's Disease in Mice. Bioconjugate Chemistry, 2019, 30, 2573-2583.	1.8	63
28	Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson's disease therapeutics. Neurochemistry International, 2019, 129, 104478.	1.9	47
29	Intra-arterial stem cell therapy modulates neuronal calcineurin and confers neuroprotection after ischemic stroke. International Journal of Neuroscience, 2019, 129, 1039-1044.	0.8	24
30	An in silico investigation on the inhibitory potential of the constituents of Pomegranate juice on antioxidant defense mechanism: Relevance to neurodegenerative diseases. IBRO Reports, 2019, 6, 153-159.	0.3	34
31	Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2629-2646.	1.7	8
32	Garcinol, a multifaceted sword for the treatment of Parkinson's disease. Neurochemistry International, 2019, 128, 50-57.	1.9	31
33	Interplay between Mitophagy and Inflammasomes in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2195-2208.	1.7	19
34	Neurological sequel of chronic kidney disease: From diminished Acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain. Scientific Reports, 2019, 9, 3097.	1.6	66
35	Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke. Life Sciences, 2019, 216, 49-58.	2.0	37
36	Mitochondrial Dysfunction in Stroke: Implications of Stem Cell Therapy. Translational Stroke Research, 2019, 10, 121-136.	2.3	37

#	Article	IF	CITATIONS
37	Therapeutic spectrum of interferonâ€Î² in ischemic stroke. Journal of Neuroscience Research, 2019, 97, 116-127.	1.3	18
38	Animal Models of Ischemic Stroke. , 2019, , 41-50.		1
39	Physical Impairments Associated with Diseases: A Pathophysiological Approach. , 2019, , 597-617.		0
40	Advances in Diagnostic Techniques for Therapeutic Intervention. , 2019, , 105-121.		0
41	Noncoding RNAs in ischemic stroke: time to translate. Annals of the New York Academy of Sciences, 2018, 1421, 19-36.	1.8	41
42	Attenuation of Aluminum Chloride-Induced Neuroinflammation and Caspase Activation Through the AKT/GSK-3β Pathway by Hesperidin in Wistar Rats. Neurotoxicity Research, 2018, 34, 463-476.	1.3	76
43	Myeloperoxidase and Neurological Disorder: A Crosstalk. ACS Chemical Neuroscience, 2018, 9, 421-430.	1.7	50
44	Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Translational Stroke Research, 2018, 9, 356-374.	2.3	49
45	Disturbed purine nucleotide metabolism in chronic kidney disease is a risk factor for cognitive impairment. Medical Hypotheses, 2018, 111, 36-39.	0.8	22
46	Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson's disease. Life Sciences, 2018, 192, 238-245.	2.0	51
47	A Friend or Foe: Calcineurin across the Gamut of Neurological Disorders. ACS Central Science, 2018, 4, 805-819.	5.3	35
48	Accumulation of Cholesterol and Homocysteine in the Nigrostriatal Pathway of Brain Contributes to the Dopaminergic Neurodegeneration in Mice. Neuroscience, 2018, 388, 347-356.	1.1	16
49	Garcinol, an effective monoamine oxidase-B inhibitor for the treatment of Parkinson's disease. Medical Hypotheses, 2018, 117, 54-58.	0.8	23
50	Inflammasomes in stroke: a triggering role for acidâ€sensing ion channels. Annals of the New York Academy of Sciences, 2018, 1431, 14-24.	1.8	13
51	Hypercholesterolemia causes psychomotor abnormalities in mice and alterations in cortico-striatal biogenic amine neurotransmitters: Relevance to Parkinson's disease. Neurochemistry International, 2017, 108, 15-26.	1.9	25
52	1-Methyl-4-Phenylpyridinium-Induced Death of Differentiated SH-SY5Y Neurons Is Potentiated by Cholesterol. Annals of Neurosciences, 2017, 24, 243-251.	0.9	10
53	Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Scientific Reports, 2017, 7, 17922.	1.6	43
54	Stroke Management: An Emerging Role of Nanotechnology. Micromachines, 2017, 8, 262.	1.4	38

#	Article	IF	CITATIONS
55	Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress. PLoS ONE, 2017, 12, e0171285.	1.1	67
56	Chronic exposure of homocysteine in mice contributes to dopamine loss by enhancing oxidative stress in nigrostriatum and produces behavioral phenotypes of Parkinson's disease. Biochemistry and Biophysics Reports, 2016, 6, 47-53.	0.7	19
57	Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson's disease. Neurochemistry International, 2016, 101, 48-55.	1.9	66
58	A highly reproducible mice model of chronic kidney disease: Evidences of behavioural abnormalities and blood-brain barrier disruption. Life Sciences, 2016, 161, 27-36.	2.0	42
59	α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Science Translational Medicine, 2016, 8, 342ra78.	5.8	432
60	L-DOPA-induced hyperhomocysteinemia in Parkinson's disease: Elephant in the room. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1989-1997.	1.1	32
61	L-DOPA treatment in MPTP-mouse model of Parkinson's disease potentiates homocysteine accumulation in substantia nigra. Neuroscience Letters, 2016, 628, 225-229.	1.0	15
62	Cholesterol in Pancreatic \hat{I}^2 -Cell Death and Dysfunction. Pancreas, 2016, 45, 317-324.	0.5	12
63	Garcinol prevents hyperhomocysteinemia and enhances bioavailability of L-DOPA by inhibiting catechol-O-methyltransferase: an in silico approach. Medicinal Chemistry Research, 2016, 25, 116-122.	1.1	19
64	Cholesterol – A putative endogenous contributor towards Parkinson's disease. Neurochemistry International, 2015, 90, 125-133.	1.9	54
65	Activation of NMDA receptor by elevated homocysteine in chronic liver disease contributes to encephalopathy. Medical Hypotheses, 2015, 85, 64-67.	0.8	15
66	The potential physiological crosstalk and interrelationship between two sovereign endogenous amines, melatonin and homocysteine. Life Sciences, 2015, 139, 97-107.	2.0	13
67	Piroxicam confer neuroprotection in Cerebral Ischemia by inhibiting Cyclooxygenases, Acid-Sensing Ion Channel-1a and Aquaporin-4: an in silico comparison with Aspirin and Nimesulide. Bioinformation, 2015, 11, 217-222.	0.2	15
68	Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit: An in silico study elucidating a novel mechanism of action of the drug. Medical Hypotheses, 2014, 83, 740-746.	0.8	15
69	Inhibition of matrix metalloproteinase-2 and 9 by Piroxicam confer neuroprotection in cerebral ischemia: An in silico evaluation of the hypothesis. Medical Hypotheses, 2014, 83, 697-701.	0.8	27
70	Contribution of β-phenethylamine, a component of chocolate and wine, to dopaminergic neurodegeneration: implications for the pathogenesis of Parkinson's disease. Neuroscience Bulletin, 2013, 29, 655-660.	1.5	25
71	Neuroprotective Potential of Silymarin against <scp>CNS</scp> Disorders: Insight into the Pathways and Molecular Mechanisms of Action. CNS Neuroscience and Therapeutics, 2013, 19, 847-853.	1.9	79
72	β-Phenethylamine-A Phenylalanine Derivative in Brain-Contributes to Oxidative Stress by Inhibiting Mitochondrial Complexes and DT-Diaphorase: An <i>In Silico</i> Study. CNS Neuroscience and Therapeutics, 2013, 19, 596-602.	1.9	23

#	Article	IF	CITATION
73	L-DOPA induced-endogenous 6-hydroxydopamine is the cause of aggravated dopaminergic neurodegeneration in Parkinson's disease patients. Medical Hypotheses, 2012, 79, 271-273.	0.8	31
74	Salicylic acid protects against chronic l-DOPA-induced 6-OHDA generation in experimental model of parkinsonism. Brain Research, 2010, 1344, 192-199.	1.1	20
75	l-DOPA-induced 6-hydroxydopamine production in the striata of rodents is sensitive to the degree of denervation. Neurochemistry International, 2010, 56, 357-362.	1.9	26
76	Melatonin inhibits 6â€hydroxydopamine production in the brain to protect against experimental parkinsonism in rodents. Journal of Pineal Research, 2009, 47, 293-300.	3.4	62
77	Striatal dopamine level contributes to hydroxyl radical generation and subsequent neurodegeneration in the striatum in 3-nitropropionic acid-induced Huntington's disease in rats. Neurochemistry International, 2009, 55, 431-437.	1.9	24
78	Long term L-DOPA treatment causes production of 6-OHDA in the mouse striatum: Involvement of hydroxyl radical. Annals of Neurosciences, 2009, 16, 160-165.	0.9	11
79	Long-Term L-DOPA Treatment Causes Indiscriminate Increase in Dopamine Levels at the Cost of Serotonin Synthesis in Discrete Brain Regions of Rats. Cellular and Molecular Neurobiology, 2007, 27, 985-996.	1.7	60