Luis MarÃ-a Corrochano Peláez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5402508/publications.pdf

Version: 2024-02-01

63 papers 2,974 citations

201674 27 h-index 53 g-index

66 all docs 66
docs citations

66 times ranked

2483 citing authors

#	Article	IF	CITATIONS
1	Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication. PLoS Genetics, 2009, 5, e1000549.	3.5	332
2	Comparative genomics of citric-acid-producing <i>Aspergillus niger</i> ATCC 1015 versus enzyme-producing CBS 513.88. Genome Research, 2011, 21, 885-897.	5.5	329
3	Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochemical and Photobiological Sciences, 2007, 6, 725.	2.9	184
4	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	3.9	175
5	A glimpse into the basis of vision in the kingdom Mycota. Fungal Genetics and Biology, 2010, 47, 881-892.	2.1	162
6	Regulation of Conidiation by Light in <i>Aspergillus nidulans</i> . Genetics, 2011, 188, 809-822.	2.9	127
7	The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4546-4551.	7.1	124
8	Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annual Review of Genetics, 2019, 53, 149-170.	7.6	83
9	Photobiology in the Zygomycota: Multiple photoreceptor genes for complex responses to light. Fungal Genetics and Biology, 2010, 47, 893-899.	2.1	76
10	A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genetics and Biology, 2010, 47, 352-363.	2.1	75
11	<i>Phycomyces</i> MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7095-7100.	7.1	73
12	Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15130-15135.	7.1	72
13	New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales. Mycologia, 2006, 98, 550-559.	1.9	64
14	Light and Developmental Regulation of the Gene con-10 of Neurospora crassa. Developmental Biology, 1995, 167, 190-200.	2.0	63
15	Genes for mevalonate biosynthesis in Phycomyces. Molecular Genetics and Genomics, 2002, 266, 768-777.	2.1	48
16	Isolation and molecular analysis of the orotidine-5′-phosphate decarboxylase gene (pyrG) of Phycomyces blakesleeanus. Molecular Genetics and Genomics, 1990, 224, 269-278.	2.4	46
17	Fungal stress biology: a preface to the Fungal Stress Responses special edition. Current Genetics, 2015, 61, 231-238.	1.7	46
18	The Complexity of Fungal Vision. Microbiology Spectrum, 2016, 4, .	3.0	46

#	Article	IF	CITATIONS
19	A Relationship between Carotenoid Accumulation and the Distribution of Species of the Fungus Neurospora in Spain. PLoS ONE, 2012, 7, e33658.	2.5	43
20	Photomorphogenesis inPhycomyces: Fluence-response curves and action spectra. Planta, 1988, 174, 315-320.	3.2	41
21	Regulation by Blue Light of the <i>fluffy</i> Gene Encoding a Major Regulator of Conidiation in <i>Neurospora crassa</i> Genetics, 2010, 184, 651-658.	2.9	41
22	A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genetics and Biology, 2012, 49, 398-404.	2.1	37
23	Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: proteins required for photoinduction and mechanism for adaptation to light. Molecular Microbiology, 2006, 61, 1049-1059.	2.5	34
24	New findings of <i>Neurospora</i> in Europe and comparisons of diversity in temperate climates on continental scales. Mycologia, 2006, 98, 550-559.	1.9	31
25	Conidiation in Neurospora crassa: vegetative reproduction by a model fungus. International Microbiology, 2020, 23, 97-105.	2.4	31
26	A role in the regulation of transcription by light for RCO-1 and RCM-1, the Neurospora homologs of the yeast Tup1–Ssn6 repressor. Fungal Genetics and Biology, 2010, 47, 939-952.	2.1	30
27	Photomorphogenesis in Phycomyces: Dependence on environmental conditions. Planta, 1988, 174, 309-314.	3.2	28
28	PHOTOMORPHOGENESIS IN Phycomyces and IN OTHER FUNGI. Photochemistry and Photobiology, 1991, 54, 319-327.	2.5	28
29	Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of <i>Neurospora crassa</i> . Genetics, 2019, 212, 691-710.	2.9	28
30	The gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungus Phycomyces blakesleeanus. Current Genetics, 2004, 46, 295-303.	1.7	27
31	Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Fungal Biology, 2020, 124, 263-272.	2.5	27
32	Fungal photobiology: a synopsis. IMA Fungus, 2011, 2, 25-28.	3.8	26
33	Regulation of transcription by light in Neurospora crassa: AÂmodel for fungal photobiology?. Fungal Biology Reviews, 2013, 27, 10-18.	4.7	25
34	Cysteinyl-tRNA synthetase is a direct descendant of the first aminoacyl-tRNA synthetase. FEBS Letters, 1991, 286, 176-180.	2.8	24
35	Transcriptional basis of enhanced photoinduction of carotenoid biosynthesis at low temperature in the fungus Neurospora crassa. Research in Microbiology, 2018, 169, 78-89.	2.1	23
36	A Genetic Selection For <i>Neurospora crassa</i> Mutants Altered in Their Light Regulation of Transcription. Genetics, 2008, 178, 171-183.	2.9	22

#	Article	IF	Citations
37	A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Scientific Reports, 2017, 7, 44790.	3.3	22
38	A global multilocus analysis of the model fungus Neurospora reveals a single recent origin of a novel genetic system. Molecular Phylogenetics and Evolution, 2014, 78, 136-147.	2.7	20
39	SUBLIMINAL LIGHT CONTROL OF DARK ADAPTATION KINETICS IN Phycomyces PHOTOTROPISM. Photochemistry and Photobiology, 1989, 49, 485-491.	2.5	19
40	Photomorphogenesis in behavioural and colour mutants of Phycomyces. Journal of Photochemistry and Photobiology B: Biology, 1990, 6, 325-335.	3.8	19
41	The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase. Current Biology, 2020, 30, 4483-4490.e4.	3.9	19
42	Differentiation of neuroblastoma cells correlates with an altered splicing pattern of tau RNA. FEBS Letters, 1992, 299, 10-14.	2.8	18
43	Separate Sensory Pathways for Photomorphogenesis in Phycomyces. Photochemistry and Photobiology, 1998, 67, 467-472.	2.5	15
44	Photomorphogenesis in Phycomyces: differential display of gene expression by PCR with arbitrary primers. Molecular Genetics and Genomics, 2002, 267, 424-428.	2.1	14
45	Alteration of Light-Dependent Gene Regulation by the Absence of the RCO-1/RCM-1 Repressor Complex in the Fungus Neurospora crassa. PLoS ONE, 2014, 9, e95069.	2.5	13
46	Photobiology of the keystone genus Metarhizium. Journal of Photochemistry and Photobiology B: Biology, 2022, 226, 112374.	3.8	13
47	Cloning a segment of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase inPhycomyces blakesleeanus andGibberella fujikuroi by the polymerase chain reaction. Experimental Mycology, 1992, 16, 167-171.	1.6	12
48	Translocation events in the evolution of aminoacyl-tRNA synthetases Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8485-8489.	7.1	12
49	A test of human cDNA synthesis by the polymerase chain reaction. Genetic Analysis, Techniques and Applications, 1991, 8, 134-135.	1.5	11
50	Light regulates a Phycomyces blakesleeanus gene family similar to the carotenogenic repressor gene of Mucor circinelloides. Fungal Biology, 2020, 124, 338-351.	2.5	10
51	Light Sensing. , 0, , 415-441.		9
52	Genomic organization of the fungus Phycomyces. Gene, 1996, 174, 43-50.	2.2	8
53	11 Photomorphogenesis and Gravitropism in Fungi. , 2016, , 235-266.		7
54	Chapter 21 Genetics of Phycomyces and its responses to light. Comprehensive Series in Photosciences, 2001, 1, 589-620.	0.3	5

#	Article	IF	Citations
55	Glucose sensing and light regulation: A mutation in the glucose sensor RCO-3 modifies photoadaptation in Neurospora crassa. Fungal Biology, 2018, 122, 497-504.	2.5	5
56	Photoregulation of Fungal Gene Expression. , 1996, , 285-292.		5
57	Light regulates the degradation of the regulatory protein VE-1 in the fungus Neurospora crassa. BMC Biology, 2022, 20, .	3.8	5
58	Sequence analysis of thymidine kinase-defective mutants of equine herpesvirus-1 (EHV-1). Gene, 1993, 126, 257-260.	2.2	4
59	Nucleotide composition in protein-coding and non-coding DNA in the zygomycete Phycomyces blakesleeanus. Mycological Research, 2004, 108, 858-863.	2.5	3
60	Measurement of Phototropism of the Sporangiophore of Phycomyces blakesleeanus. Methods in Molecular Biology, 2019, 1924, 63-81.	0.9	2
61	Genomic Structure and Sequence Analysis of the Valyl-tRNA synthetase Gene of the Japanese Pufferfish, <i>Fugu rubripes </i> DNA Sequence, 1997, 7, 141-151.	0.7	1
62	Spanish practice. Nature, 1996, 384, 106-106.	27.8	0
63	The Complexity of Fungal Vision. , 2017, , 441-461.		0