
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5402200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 2015, 6, 791.	3.5	1,004
2	Chitinase production by <i>Streptomyces viridificans:</i> its potential in fungal cell wall lysis. Journal of Applied Bacteriology, 1995, 78, 378-383.	1.1	188
3	Emerging water-borne pathogens. Applied Microbiology and Biotechnology, 2003, 61, 424-428.	3.6	120
4	Production of Yersinia stable toxin (YST) and distribution of yst genes in biotype 1A strains of Yersinia enterocolitica. Journal of Medical Microbiology, 2004, 53, 1065-1068.	1.8	82
5	Integrons in Enterobacteriaceae : diversity, distribution and epidemiology. International Journal of Antimicrobial Agents, 2018, 51, 167-176.	2.5	76
6	Detection of Yersinia enterocolitica in food: an overview. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 641-650.	2.9	72
7	Distribution of virulence-associated genes inYersinia enterocoliticabiovar 1A correlates with clonal groups and not the source of isolation. FEMS Microbiology Letters, 2007, 266, 177-183.	1.8	71
8	Escherichia coli \hat{l}^2 -Lactamases: What Really Matters. Frontiers in Microbiology, 2016, 7, 417.	3.5	71
9	Synthesis and Biological Evaluation of Novel Bisbenzimidazoles as <i>Escherichia coli</i> Topoisomerase IA Inhibitors and Potential Antibacterial Agents. Journal of Medicinal Chemistry, 2014, 57, 5238-5257.	6.4	69
10	The Enigma of <i>Yersinia enterocolitica</i> biovar 1A. Critical Reviews in Microbiology, 2011, 37, 25-39.	6.1	64
11	Distribution and molecular characterization of genes encoding CTX-M and AmpC β-lactamases in Escherichia coli isolated from an Indian urban aquatic environment. Science of the Total Environment, 2015, 505, 350-356.	8.0	64
12	Genetic Environment of blaTEM-1, blaCTX-M-15, blaCMY-42 and Characterization of Integrons of Escherichia coli Isolated From an Indian Urban Aquatic Environment. Frontiers in Microbiology, 2018, 9, 382.	3.5	58
13	Repetitive elements sequence (REP/ERIC)-PCR based genotyping of clinical and environmental strains ofYersinia enterocoliticabiotype 1A reveal existence of limited number of clonal groups. FEMS Microbiology Letters, 2004, 240, 193-201.	1.8	49
14	Evaluation of Bile Salt Hydrolases, Cholesterol-Lowering Capabilities, and Probiotic Potential of Enterococcus faecium Isolated From Rhizosphere. Frontiers in Microbiology, 2019, 10, 1567.	3.5	47
15	CBMAR: a comprehensive \hat{l}^2 -lactamase molecular annotation resource. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau111.	3.0	36
16	MALDI-TOF MS in clinical parasitology: applications, constraints and prospects. Parasitology, 2016, 143, 1491-1500.	1.5	33
17	Detection and assay of Â-lactamases in clinical and non-clinical strains of Yersinia enterocolitica biovar 1A. Journal of Antimicrobial Chemotherapy, 2004, 54, 401-405.	3.0	31
18	Quinolone co-resistance in ESBL- or AmpC-producing Escherichia coli from an Indian urban aquatic environment and their public health implications. Environmental Science and Pollution Research, 2016. 23, 1954-1959	5.3	26

#	Article	IF	CITATIONS
19	Preparation and Antimicrobial Action of Three Tryptic Digested Functional Molecules of Bovine Lactoferrin. PLoS ONE, 2014, 9, e90011.	2.5	26
20	Molecular modeling and MD-simulation studies: Fast and reliable tool to study the role of low-redox bacterial laccases in the decolorization of various commercial dyes. Environmental Pollution, 2019, 253, 1056-1065.	7.5	25
21	Molecular and biochemical characterization of urease and survival of Yersinia enterocolitica biovar 1A in acidic pH in vitro. BMC Microbiology, 2009, 9, 262.	3.3	24
22	Multilocus variable number tandem repeat analysis as a tool to discern genetic relationships among strains of <i>Yersinia enterocolitica</i> biovar 1A. Journal of Applied Microbiology, 2009, 107, 875-884.	3.1	23
23	Molecular modeling and docking of novel laccase from multiple serotype of Yersinia enterocolitica suggests differential and multiple substrate binding. Biochemical and Biophysical Research Communications, 2014, 449, 157-162.	2.1	23
24	Molecular heterogeneity inYersinia enterocoliticaand â€Â~Y. enterocolitica-like' species – Implica for epidemiology, typing and taxonomy. FEMS Immunology and Medical Microbiology, 2005, 45, 1-10.	ations 2.7	22
25	Mycobacterium tuberculosis Cyclophilin A Uses Novel Signal Sequence for Secretion and Mimics Eukaryotic Cyclophilins for Interaction with Host Protein Repertoire. PLoS ONE, 2014, 9, e88090.	2.5	22
26	Strategies used by Yersinia enterocolitica to evade killing by the host: thinking beyond Yops. Microbes and Infection, 2014, 16, 87-95.	1.9	21
27	Effects of aflatoxin on the immune system of the chick. Journal of Applied Toxicology, 1989, 9, 271-275.	2.8	20
28	Molecular characterization of β-lactamase genesblaAandblaBofYersinia enterocoliticabiovar 1A. FEMS Microbiology Letters, 2006, 257, 319-327.	1.8	20
29	Interaction of Yersinia enterocolitica biotype 1A strains of diverse origin with cultured cells in vitro. Japanese Journal of Infectious Diseases, 2005, 58, 31-3.	1.2	20
30	The rrn locus and gyrB genotyping confirm the existence of two clonal groups in strains of Yersinia enterocolitica subspecies palearctica biovar 1A. Research in Microbiology, 2007, 158, 236-243.	2.1	18
31	Evaluation of Probiotic Characteristics of Lactic Acid Bacteria Isolated from Two Commercial Preparations Available in Indian Market. Indian Journal of Microbiology, 2019, 59, 112-115.	2.7	18
32	Genetic relationships between clinical and non-clinical strains of Yersinia enterocolitica biovar 1A as revealed by multilocus enzyme electrophoresis and multilocus restriction typing. BMC Microbiology, 2010, 10, 158.	3.3	16
33	Molecular Analysis of β-Lactamase Genes to Understand their Differential Expression in Strains of Yersinia enterocolitica Biotype 1A. Scientific Reports, 2015, 4, 5270.	3.3	14
34	Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro. Scientific Reports, 2021, 11, 15288.	3.3	14
35	Amelioratory Effects of Zinc Supplementation on Salmonella-induced Hepatic Damage in the Murine Model. Digestive Diseases and Sciences, 2008, 53, 1063-1070.	2.3	13
36	Proteomic analysis of Yersinia enterocolitica biovar 1A under iron-rich and iron-poor conditions indicate existence of efficiently regulated mechanisms of iron homeostasis. Journal of Proteomics, 2015, 124, 39-49.	2.4	12

#	Article	IF	CITATIONS
37	Proteomic analysis of arsenite – mediated multiple antibiotic resistance in <i>Yersinia enterocolitica</i> biovar 1A. Journal of Basic Microbiology, 2012, 52, 306-313.	3.3	11
38	Proteomic analysis reveals the damaging role of low redox laccase from Yersinia enterocolitica strain 8081 in the midgut of Helicoverpa armigera. Biotechnology Letters, 2020, 42, 2189-2210.	2.2	11
39	Arsenic and cadmium resistance in environmental isolates of Yersinia enterocolitica and Yersinia intermedia. Canadian Journal of Microbiology, 2000, 46, 481-484.	1.7	9
40	Identification of Family Specific Fingerprints inβ-Lactamase Families. Scientific World Journal, The, 2014, 2014, 1-7.	2.1	9
41	High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Frontiers in Microbiology, 2021, 12, 621564.	3.5	9
42	Characteristics of β-lactamases and their genes (blaA and blaB) in Yersinia intermedia and Y. frederiksenii. BMC Microbiology, 2007, 7, 25.	3.3	8
43	Virulence plasmid (pYV)-associated susceptibility of Yersinia enterocolitica to chlorine and heavy metals. Journal of Applied Microbiology, 2000, 89, 663-667.	3.1	7
44	Detection, Distribution and Characterization of Novel Superoxide Dismutases from Yersinia enterocolitica Biovar 1A. PLoS ONE, 2013, 8, e63919.	2.5	7
45	Whole cell protein profiling reiterate phylogenetic relationships among strains of Yersinia enterocolitica biovar 1A as discerned earlier by different genotyping methods. Journal of Applied Microbiology, 2010, 109, 946-952.	3.1	6
46	Analysis of iron acquisition and storageâ€related genes in clinical and nonâ€clinical strains of Yersinia enterocolitica biovar 1A. Apmis, 2015, 123, 858-866.	2.0	6
47	Identification and distribution of putative virulence genes in clinical strains ofYersinia enterocoliticabiovar 1A by suppression subtractive hybridization. Journal of Applied Microbiology, 2012, 113, 1263-1272.	3.1	5
48	Arsenite-Induced Multiple Antibiotic Resistance Phenotype in Environmental Isolates of Yersinia enterocolitica. Current Microbiology, 2001, 43, 144-146.	2.2	4
49	Resistance to amoxicillin-clavulanate and its relation to virulence-related factors in Yersinia enterocolitica biovar 1A. Indian Journal of Medical Microbiology, 2016, 34, 85-87.	0.8	4
50	Anti-Yersinia Activity of Cryptdin-2: A Paneth Cell Peptide. The National Academy of Sciences, India, 2013, 36, 161-166.	1.3	3
51	Interaction of Yersinia enterocolitica biovar 1A with cultured cells in vitro does not reflect the two previously identified clonal groups. Journal of Medical Microbiology, 2013, 62, 1807-1814.	1.8	3
52	Virulence-associated traits and in vitro biofilm-forming ability of Escherichia coli isolated from a major river traversing Northern India. Environmental Science and Pollution Research, 2019, 26, 21304-21311.	5.3	3
53	Genetic diversity of pathogenic microorganisms and its medical and public health significance. Indian Journal of Medical Microbiology, 2007, 25, 2.	0.8	3
54	In vitro antibiotic susceptibilities of Yersinia enterocolitica biotype 1A. World Journal of Microbiology and Biotechnology, 2004, 20, 329-331.	3.6	2

#	Article	IF	CITATIONS
55	Isolation, Characterization and Production of Bacterial Laccase from Bacillus sp , 2014, , 439-450.		2
56	Antimicrobial resistance and its relationship with biofilm production and virulence-related factors in Yersinia enterocolitica biotype 1A. Heliyon, 2019, 5, e01777.	3.2	2
57	Molecular Characteristics of "BlaB-Like―Chromosomal Inducible Cephalosporinase of Yersinia enterocolitica Biotype 1A Strains. Microbial Drug Resistance, 2019, 25, 824-829.	2.0	2
58	Exploring the genetic determinants underlying the differential production of an inducible chromosomal cephalosporinase - BlaB in Yersinia enterocolitica biotypes 1A, 1B, 2 and 4. Scientific Reports, 2020, 10, 10167.	3.3	2
59	Exploring the genetic mechanisms underlying amoxicillin-clavulanate resistance in waterborne Escherichia coli. Infection, Genetics and Evolution, 2021, 90, 104767.	2.3	2
60	Insights into the Genetic Relationships Between Environmental and Clinical Strains of Yersinia enterocolitica Biovar 1A. , 2012, , 61-80.		2
61	Isolation of plasmids from Mycobacterium avium-intracellulare complex (MAC) strains from India. Journal of Medical Microbiology, 2000, 49, 392-393.	1.8	2
62	Structural Variabilities in β-Lactamase (blaA) of Different Biovars of Yersinia enterocolitica: Implications for β-Lactam Antibiotic and β-Lactamase Inhibitor Susceptibilities. PLoS ONE, 2015, 10, e0123564.	2.5	2
63	Assessment of antibiotic resistance genes and integrons in commensal Escherichia coli from the Indian urban waste water: Implications and significance for public health. Canadian Journal of Biotechnology, 2017, 1, 116-116.	0.3	2
64	Differentiation of non-pathogenic (biotype 1A) Yersinia enterocolitica from pathogenic bioserotypes by sodium acetate utilisation. Journal of Medical Microbiology, 2000, 49, 674-674.	1.8	2
65	Public health implications of plasmid-mediated quinolone and aminoglycoside resistance genes in <i>Escherichia coli</i> inhabiting a major anthropogenic river of India. Epidemiology and Infection, 2022, , 1-21.	2.1	2
66	Molecular analysis of ampR and ampD to understand variability in inducible expression of "BlaB-like― cephalosporinase in Yersinia enterocolitica biotype 1A. Gene, 2019, 704, 25-30.	2.2	1
67	ampD homologs in biotypes of Yersinia enterocolitica: Implications in regulation of chromosomal AmpC-type cephalosporinases. Infection, Genetics and Evolution, 2019, 69, 211-215.	2.3	1
68	Bacterial Whole Cell Protein Profiling: Methodology, Applications and Constraints. Current Proteomics, 2019, 16, 102-109.	0.3	1
69	Exogenous phage recombinase-independent inactivation of chromosomal genes in Yersinia enterocolitica. Journal of Microbiological Methods, 2013, 95, 102-106.	1.6	Ο
70	Prospects of comparative genomics of β-lactamase genes in rapid antimicrobial resistance (AMR) detection and newer β-lactamase inhibitors. Canadian Journal of Biotechnology, 2017, 1, 259-259.	0.3	0
71	Medical Microbiology in India: the recent developments in the basic research, diagnostics and vaccines. Proceedings of the Indian National Science Academy, 2019, , .	1.4	0
72	Comparative Proteomics of Commensal and Pathogenic Strains of Escherichia coli. Protein and Peptide Letters, 2020, 27, 1171-1177.	0.9	0

#	Article	IF	CITATIONS
73	Draft Genome Sequence of a Poly-Î ³ -Glutamic Acid-Producing Isolate, Bacillus paralicheniformis Strain bcasdu2018/01. Microbiology Resource Announcements, 2021, 10, e0101321.	0.6	Ο
74	Occurrence and Dietary Risk Assessment of Pesticides in Wheat Fields of Ghaziabad City, India. Asian Journal of Chemistry, 2022, 34, 695-703.	0.3	0