Bo E Sernelius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5402135/publications.pdf Version: 2024-02-01

RO F SEDNELIUS

#	Article	IF	CITATIONS
1	Band-gap tailoring of ZnO by means of heavy Al doping. Physical Review B, 1988, 37, 10244-10248.	1.1	804
2	Band-gap widening in heavily Sn-dopedIn2O3. Physical Review B, 1984, 30, 3240-3249.	1.1	581
3	Band-gap narrowing in heavily doped many-valley semiconductors. Physical Review B, 1981, 24, 1971-1986.	1.1	439
4	Thermal Effects on the Casimir Force in the 0.1–5μmRange. Physical Review Letters, 2000, 84, 4757-4760.	2.9	295
5	Defect related issues in the "current roll-off―in InGaN based light emitting diodes. Applied Physics Letters, 2007, 91, .	1.5	274
6	Metal-insulator transition and superconductivity in boron-doped diamond. Physical Review B, 2007, 75, .	1.1	162
7	Electron-electron interactions and the bandwidth of metals. Physical Review Letters, 1989, 62, 2718-2720.	2.9	114
8	Effects of spatial dispersion on electromagnetic surface modes and on modes associated with a gap between two half spaces. Physical Review B, 2005, 71, .	1.1	97
9	Entropy of the Casimir effect between real metal plates. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 53-59.	1.2	83
10	Retarded interactions in graphene systems. Physical Review B, 2012, 85, .	1.1	80
11	Fractional van der Waals interaction between thin metallic films. Physical Review B, 2000, 61, 2204-2210.	1.1	78
12	Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. Journal of Applied Physics, 1999, 86, 4419-4427.	1.1	77
13	Surface recombination in ZnO nanorods grown by chemical bath deposition. Journal of Applied Physics, 2008, 104, .	1.1	75
14	Self-energy corrections in photoemission of Na. Physical Review B, 1987, 36, 4499-4502.	1.1	74
15	Casimir interactions in graphene systems. Europhysics Letters, 2011, 95, 57003.	0.7	73
16	Band-gap shifts in heavily dopedn-type GaAs. Physical Review B, 1986, 33, 8582-8586.	1.1	70
17	Band-gap shifts in heavilyp-type doped semiconductors of the zinc-blende and diamond type. Physical Review B, 1986, 34, 5610-5620.	1.1	68
18	Reactively sputtered ZnO: Al films for energy-efficient windows. Thin Solid Films, 1988, 164, 381-386.	0.8	68

#	Article	IF	CITATIONS
19	Two approaches for describing the Casimir interaction in graphene: Density-density correlation function versus polarization tensor. Physical Review B, 2014, 89, .	1.1	64
20	Doping-induced effects on the band structure inn-type3Câ^',2Hâ^',4Hâ^',6Hâ^'SiC,and Si. Physical Review B, 1999, 60, 16479-16493.	1.1	54
21	van der Waals energy of an atom in the proximity of thin metal films. Physical Review A, 2000, 61, .	1.0	51
22	Interaction energy for a pair of quantum wells. Physical Review B, 1998, 57, 6592-6601.	1.1	50
23	Optical properties of doped InGaN/GaN multiquantum-well structures. Applied Physics Letters, 1999, 74, 3299-3301.	1.5	50
24	Polarization propagator calculations of the polarizability tensor at imaginary frequencies and long-range interactions for the noble gases and n-alkanes. Journal of Chemical Physics, 2003, 118, 9167-9174.	1.2	48
25	Comment on "Calculation of the Casimir force between imperfectly conducting plates― Physical Review A, 2000, 61, .	1.0	47
26	Optical absorption of Li-intercalated polycrystalline tungsten oxide films: comparison to large polaron theory. Solid State Ionics, 2003, 165, 35-41.	1.3	47
27	Free electron behavior in InN: On the role of dislocations and surface electron accumulation. Applied Physics Letters, 2009, 94, 022109.	1.5	41
28	Self-energy shifts in heavily doped, polar semiconductors. Physical Review B, 1987, 36, 4878-4887.	1.1	40
29	Electron states in heavily doped semiconductors. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1981, 43, 115-148.	0.6	38
30	Electric dipole polarizabilities and C6 dipole-dipole dispersion coefficients for sodium clusters and C60. Journal of Chemical Physics, 2006, 125, 124306.	1.2	35
31	Dynamical conductivity in the infrared from impurity scattering in a polar semiconductor. Physical Review B, 1987, 36, 1080-1089.	1.1	34
32	Intervalley mixing versus disorder in heavily dopedn-type silicon. Physical Review B, 1984, 29, 5575-5580.	1.1	33
33	Effects of quantum confinement in a special GaAs field effect transistor: on the DC conductance in the regime of metallic transport. Journal of Physics C: Solid State Physics, 1985, 18, 225-240.	1.5	33
34	Generalized Drude approach to the conductivity relaxation time due to electron-hole collisions in optically excited semiconductors. Physical Review B, 1989, 40, 12438-12440.	1.1	32
35	Electron mobility enhancement in Si using doubly Î′â€doped layers. Applied Physics Letters, 1994, 64, 1842-1844	1.5	32
36	Complex polarization propagator method for calculation of dispersion coefficients of extended ï€-conjugated systems: The C6 coefficients of polyacenes and C60. Journal of Chemical Physics, 2005, 123, 124312.	1.2	32

#	Article	IF	CITATIONS
37	Retardation turns the van der Waals attraction into a Casimir repulsion as close as 3 nm. Physical Review A, 2012, 85, .	1.0	31
38	Electrical resistivity and metal-nonmetal transition inn-type doped4Hâ^'SiC. Physical Review B, 2006, 74, .	1.1	25
39	Finite-temperature Casimir force between metal plates: full inclusion of spatial dispersion resolves a long-standing controversy. Journal of Physics A, 2006, 39, 6741-6752.	1.6	25
40	Intraband relaxation time in highly excited semiconductors. Physical Review B, 1991, 43, 7136-7144.	1.1	24
41	Comment on "Casimir Force at Both Nonzero Temperature and Finite Conductivity― Physical Review Letters, 2001, 87, 259101.	2.9	24
42	C6dipole-dipole dispersion coefficients for then-alkanes: Test of an additivity procedure. Physical Review A, 2004, 69, .	1.0	23
43	Repulsive van der Waals forces due to hydrogen exposure on bilayer graphene. Physical Review A, 2012, 85, .	1.0	23
44	Bandgap widening in heavily doped oxide semiconductors used as transparent heat-reflectors. Solar Energy Materials and Solar Cells, 1985, 12, 479-490.	0.4	22
45	Temperature-dependent resistivity of heavily doped silicon and germanium. Physical Review B, 1990, 41, 3060-3068.	1.1	22
46	Transport properties of silicon implanted with bismuth. Physical Review B, 1997, 55, 9584-9589.	1.1	22
47	Fundamentals of van der Waals and Casimir Interactions. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , .	0.1	22
48	Very heavily doped semiconductors as a "nearly-free-electron-gas―system. Solid-State Electronics, 1985, 28, 11-15.	0.8	21
49	Electron-hole liquid in layered InSe: Comparison of two- and three-dimensional excitonic states. Physical Review B, 1986, 33, 8568-8581.	1.1	20
50	Effective electron and hole masses in intrinsic and heavily n-type doped GaN and AlN. Journal of Physics Condensed Matter, 2001, 13, 8915-8922.	0.7	20
51	Casimir force and complications in the van Kampen theory for dissipative systems. Physical Review B, 2006, 74, .	1.1	20
52	Ultrafast dynamic conductivity and scattering rate saturation of photoexcited charge carriers in silicon investigated with a midinfrared continuum probe. Physical Review B, 2015, 91, .	1.1	19
53	Optical and reduced band gap inn- andp-type GaN and AlN. Journal of Applied Physics, 2002, 92, 3207-3216.	1.1	18
54	Plasma-induced band edge shifts in 3C-, 2H-, 4H-, 6H–SiC and Si. Solid-State Electronics, 2000, 44, 471-476.	0.8	17

#	Article	IF	CITATIONS
55	Sernelius Replies:. Physical Review Letters, 2001, 87, .	2.9	17
56	Casimir force between atomically thin gold films. European Physical Journal B, 2013, 86, 1.	0.6	17
57	Influence of potential fluctuations on electrical transport and optical properties in modulation-dopedGaN/Al0.28Ga0.72Nheterostructures. Physical Review B, 1998, 58, 1442-1450.	1.1	16
58	Impurity resistivity of the double-donor system Si:P,Bi. Physical Review B, 1999, 60, 15824-15828.	1.1	16
59	Core-level spectra from graphene. Physical Review B, 2015, 91, .	1.1	16
60	Theoretical optical properties of polar semiconductors used as optical coatings for energy-efficient windows. Thin Solid Films, 1989, 177, 69-75.	0.8	15
61	Casimir effects in systems containing 2D layers such as graphene and 2D electron gases. Journal of Physics Condensed Matter, 2015, 27, 214017.	0.7	15
62	Exciton properties inp-type GaAs/AlxGa1â^'xAs quantum wells in the high doping regime. Physical Review B, 1996, 54, 16989-16993.	1.1	14
63	Casimir attractive-repulsive transition in MEMS. European Physical Journal B, 2012, 85, 1.	0.6	14
64	Electromagnetic normal modes and Casimir effects in layered structures. Physical Review B, 2014, 90, .	1.1	14
65	Polaron inndimensions. Physical Review B, 1987, 36, 9059-9067.	1.1	13
66	Tunneling current spectroscopy of electron subbands innâ€ŧype Î′â€doped silicon structures grown by molecular beam epitaxy. Journal of Applied Physics, 1990, 67, 1962-1968.	1.1	13
67	Temperature effects on the Casimir attraction between a pair of quantum wells. Microelectronic Engineering, 2000, 51-52, 287-297.	1.1	13
68	Electrical resistivity of acceptor carbon in GaAs. Journal of Applied Physics, 2004, 95, 2532-2535.	1.1	13
69	Graphene as a Strictly 2D Sheet or as a Film of Small but Finite Thickness. Graphene, 2012, 01, 21-25.	0.3	13
70	Theoretical high-stress optical birefringence and piezoresistance in heavily doped germanium. Arguments against band tailing. Physical Review B, 1983, 27, 6234-6245.	1.1	12
71	Electrical characterization and subband structures in antimony l´-doped molecular beam epitaxy-silicon layers. Thin Solid Films, 1989, 183, 331-338.	0.8	12
72	Electron mean free path in Be metal. Physical Review B, 1994, 50, 16817-16823.	1.1	12

#	Article	IF	CITATIONS
73	Retardation-enhanced van der Waals force between thin metal films. Physical Review B, 2000, 62, 7523-7526.	1.1	12
74	Electrical resistivity and band-gap shift of Si-doped GaN and metal-nonmetal transition in cubic GaN, InN and AlN systems. Journal of Crystal Growth, 2001, 231, 420-427.	0.7	12
75	Casimir experiments showing saturation effects. Physical Review A, 2009, 80, .	1.0	12
76	Origin of negative magnetoresistance in heavily dopedn-type silicon and germanium. Physical Review B, 1979, 19, 6390-6396.	1.1	11
77	Many-body effects in highly acceptor-dopedGaAs/AlxGa1â^'xAsquantum wells. Physical Review B, 1998, 58, 4624-4628.	1.1	11
78	Photoluminescence study of Si-doped GaNâ^•Al0.07Ga0.93N multiple quantum wells with different dopant position. Applied Physics Letters, 2004, 84, 5071-5073.	1.5	11
79	Beyond the simple proximity force approximation: Geometrical effects on the nonretarded Casimir interaction. Physical Review A, 2008, 78, .	1.0	11
80	Ultrathin metallic coatings can induce quantum levitation between nanosurfaces. Applied Physics Letters, 2012, 100, 253104.	1.5	11
81	Thermally activated intersubband and hopping transport in center-dopedp-type GaAs/AlxGa1â~'xAs quantum wells. Physical Review B, 1996, 53, 1357-1361.	1.1	10
82	Possible induced enhancement of dispersion forces by cellular phones. Physical Chemistry Chemical Physics, 2004, 6, 1363-1368.	1.3	10
83	Casimir forces in a plasma: possible connections to Yukawa potentials. European Physical Journal D, 2014, 68, 1.	0.6	10
84	Metal-nonmetal transition and resistivity of silicon implanted with bismuth. Journal of Materials Research, 1997, 12, 641-645.	1.2	9
85	Many-body effects in highlyp-type modulation-dopedGaAs/AlxGa1â^`xAsquantum wells. Physical Review B, 2000, 61, 2794-2798.	1.1	9
86	Influence of Si doping on optical properties of wurtzite GaN. Journal of Physics Condensed Matter, 2001, 13, 8891-8899.	0.7	9
87	Acoustic-phonon anomaly inMgB2. Physical Review B, 2002, 66, .	1.1	9
88	First principle calculations of dipole-dipole dispersion coefficients for the ground and first π → π* excited states of some azabenzenes. Journal of Computational Methods in Sciences and Engineering, 2004, 4, 321-332.	0.1	9
89	Intermolecular Casimir-Polder forces in water and near surfaces. Physical Review E, 2014, 90, 032122.	0.8	9
90	Magnetoresistance of doped silicon. Physical Review B, 2015, 91, .	1.1	9

#	Article	IF	CITATIONS
91	Optical free-carrier absorption of an electron-hole plasma in silicon. Physical Review B, 1989, 39, 10825-10830.	1.1	8
92	Band-gap shift of the heavily doped single- and double-donor systems Si:Bi and Si:P,Bi. Physical Review B, 2000, 62, 12882-12887.	1.1	8
93	Forces between air-bubbles in electrolyte solution. Chemical Physics Letters, 2008, 458, 299-302.	1.2	8
94	Attractive double-layer forces between neutral hydrophobic and neutral hydrophilic surfaces. Physical Review E, 2011, 84, 061903.	0.8	8
95	Polarized hot-electron photoluminescence in highly doped GaAs. Physical Review B, 1986, 34, 8696-8702.	1.1	7
96	Electrical resistivity of bismuth implanted into silicon. Journal of Applied Physics, 1996, 79, 3453-3455.	1.1	7
97	Wetting problems for coatings on windshields. Applied Surface Science, 1999, 142, 375-380.	3.1	7
98	Phonon replicas of charged and neutral exciton complexes in single quantum dots. Physical Review B, 2010, 82, .	1.1	7
99	Electrical resistivity, MNM transition and band-gap narrowing of cubic GaN:Si. Microelectronics Journal, 2002, 33, 365-369.	1.1	6
100	Sign of the Casimir-Polder interaction between atoms and oil-water interfaces: Subtle dependence on dielectric properties. Physical Review A, 2012, 85, .	1.0	6
101	CASIMIR EFFECTS IN GRAPHENE SYSTEMS: UNEXPECTED POWER LAWS. International Journal of Modern Physics Conference Series, 2012, 14, 531-540.	0.7	6
102	The zero-temperature d.c. conductivity versus density and the metal-insulator transition in some heavily doped semiconductor systems. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 52, 459-469.	0.6	5
103	Theories of impurity resistivity. Journal of Physics Condensed Matter, 1991, 3, 1493-1504.	0.7	5
104	<title>Carrier and exciton dynamics in In<formula><inf><roman>0.15</roman></inf></formula>Ga<formula><inf><roman>0.85</roman></inf>NGaN multiple quantum well structures</formula></title> . , 1999, , .	iula>	5
105	Strong enhancement of dispersion forces from microwave radiation. Europhysics Letters, 2002, 60, 643-648.	0.7	5
106	GRAVITATION AS A CASIMIR EFFECT. International Journal of Modern Physics A, 2009, 24, 1804-1812.	0.5	5
107	Test of the Proximity Force Approximation. Journal of Physics: Conference Series, 2009, 161, 012016.	0.3	5
108	Theoretical predictions for the surface states on Ge(111)2×1: The degree of antibonding surface-state filling and relative shifts of the two surface-state bands as functions of doping level. Physical Review B, 1986, 33, 2949-2952.	1.1	4

#	Article	IF	CITATIONS
109	Temperature dependence of the transmittance, reflectance and absorption of optical films. Thin Solid Films, 1992, 208, 96-99.	0.8	4
110	Free-polaron absorption. Physical Review B, 1993, 48, 7043-7049.	1.1	4
111	Enlarged molecules from excited atoms in nanochannels. Physical Review A, 2012, 86, .	1.0	4
112	Lithium atom storage in nanoporous cellulose via surface-induced Li ₂ breakage. Europhysics Letters, 2013, 104, 63003.	0.7	4
113	Bandgap Widening In Heavily Doped Oxide Semiconductors Used As Transparent Heat-Reflectors. , 1984, 0502, 2.		3
114	Free-carrier absorption from Fibonacci sequences ofδ-doped layers in silicon. Physical Review B, 1989, 40, 6218-6221.	1.1	3
115	Effects of electron-electron scattering on impurity resistivity. Journal of Physics Condensed Matter, 1991, 3, 8425-8432.	0.7	3
116	Evidence of Potential Fluctuations in Modulation Doped GaN/AlGaN Heterostructures. Materials Research Society Symposia Proceedings, 1997, 482, 623.	0.1	3
117	Effects of van der Waals Interaction on Current Drag between Quantum Wells. Physica Scripta, 1999, T79, 89.	1.2	3
118	Numerical study of the effect of structure and geometry on van der Waals forces. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 164008.	0.7	3
119	Casimir-Lifshitz interaction between ZnO and SiO2nanorods in bromobenzene turns repulsive at intermediate separations due to retardation effects. Physical Review A, 2012, 85, .	1.0	3
120	Electron states in heavily doped semiconductors. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1980, 42, 751-754.	0.6	2
121	Elementary excitations and quasi-two-dimensional behavior in a GaAs field-effect transistor. Physical Review B, 1984, 30, 1016-1018.	1.1	2
122	Dimensional crossover for a quasi-one-dimensional polaron. Physical Review B, 1988, 37, 7079-7082.	1.1	2
123	Spectroscopy studies of highly acceptor doped GaAs/AlGaAs quantum wells. Superlattices and Microstructures, 1995, 18, 153-155.	1.4	2
124	Current drag in a single quantum well. Journal of Physics Condensed Matter, 1996, 8, 3705-3714.	0.7	2
125	Plasmon shake-up effects in quantum-well exciton spectra. Journal of Physics Condensed Matter, 1996, 8, 9071-9081.	0.7	2
126	Comment on "Possible induced enhancement of dispersion forces by cellular phones―by B. E. Sernelius, Phys. Chem. Chem. Phys., 2004,6, 1363. Physical Chemistry Chemical Physics, 2004, 6, 3915-3915.	1.3	2

#	Article	IF	CITATIONS
127	Reply to "Comment on â€~Effects of spatial dispersion on electromagnetic surface modes and on modes associated with a gap between two half spaces' â€₁ Physical Review B, 2007, 75, .	1.1	2
128	The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 164016.	0.7	2
129	Saturation effects in experiments on the thermal Casimir effect. Europhysics Letters, 2009, 87, 14004.	0.7	2
130	THE THERMAL CASIMIR EFFECT: SATURATION. International Journal of Modern Physics A, 2010, 25, 2319-2327.	0.5	2
131	Resonance interaction induced by metal surfaces catalyzes atom-pair breakage. Physical Review A, 2013, 87, .	1.0	2
132	Nonperturbative theory for the dispersion self-energy of atoms. Physical Review A, 2014, 90, .	1.0	2
133	Heavily <i>n</i> -doped Ge: Low-temperature magnetoresistance properties on the metallic side of the metal–nonmetal transition. Journal of Applied Physics, 2020, 127, .	1.1	2
134	Low-energy electron diffraction with signal electron carrier-wave wavenumber modulated by signal exchange-correlation interaction. Journal of Physics Communications, 2021, 5, 105012.	0.5	2
135	Optical and transport studies of highly acceptor doped GaAs/AlGaAs quantum wells. Surface Science, 1996, 361-362, 420-423.	0.8	1
136	Optical studies of acceptor centre doped quantum wells. Solid-State Electronics, 1996, 40, 89-92.	0.8	1
137	Si δ-layers embedded in GaAs. Applied Physics Letters, 1998, 73, 3709-3711.	1.5	1
138	Mechanism for Radiative Recombination in In0.15Ga0.85N/GaN Multiple Quantum Well Structures. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	1
139	Electric dipole polarizabilities and C6 dipole-dipole dispersion coefficients for alkali metal clusters and C60. Journal of Computational Methods in Sciences and Engineering, 2008, 7, 475-488.	0.1	1
140	Atmospheric water droplets can catalyse atom pair break-up via surface-induced resonance repulsion. Europhysics Letters, 2013, 101, 43002.	0.7	1
141	Finite-size–dependent dispersion potentials between atoms and ions dissolved in water. Europhysics Letters, 2014, 106, 53002.	0.7	1
142	Relativistic Doppler reflection as a probe for the initial relaxation of a non-equilibrium electron-hole plasma in silicon. Journal of Physics: Conference Series, 2015, 647, 012016.	0.3	1
143	Non-perturbative theory of dispersion interactions. Physica Scripta, 2015, 90, 035405.	1.2	1
144	Core-level spectra from bilayer graphene. FlatChem, 2017, 1, 6-10.	2.8	1

#	Article	IF	CITATIONS
145	Bandgap Widening in Heavily Sn-Doped In2O3. , 1985, , 1051-1054.		1
146	Mechanism for Radiative Recombination in In0.15Ga0.85N/GaN Multiple Quantum Well Structures. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 87-92.	1.0	1
147	Theories of impurity resistivity in two dimensions. Journal of Physics Condensed Matter, 1993, 5, 335-344.	0.7	0
148	Excitation-induced optical switching in transparent coatings. Thin Solid Films, 1996, 278, 104-107.	0.8	0
149	Impurity resistivity in doubly δ-doped systems. Physica Scripta, 1997, T69, 286-289.	1.2	0
150	Properties of Si δ-layers embedded in GaAs. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 247-251.	1.3	0
151	Reply to the â€~Comment on "Possible induced enhancement of dispersion forces by cellular phones―' b R. K. Adair, Phys. Chem. Chem. Phys., 2004,6, DOI: 10.1039/b405698a. Physical Chemistry Chemical Physics, 2004, 6, 3916-3916.	у 1.3	0
152	Reply to the â€~Comment on "Possible induced enhancement of dispersion forces by cellular phones―' b Q. Balzano, Phys. Chem. Chem. Phys., 2004,6, DOI: 10.1039/b406111j. Physical Chemistry Chemical Physics, 2004, 6, 3918-3918.)y 1.3	0
153	Unravelling the free electron behavior in InN. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	0
154	Phonon Coupling to Excitonic Transitions in Single InGaAsâ^•AlGaAs Quantum Dots. AIP Conference Proceedings, 2011, , .	0.3	0
155	Relativistic Doppler frequency up-conversion and probing the initial relaxation of a non-equilibrium electron-hole plasma in silicon. , 2015, , .		Ο
156	Van der Waals Interaction in Spherical Structures. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 209-232.	0.1	0
157	Van der Waals Interaction in Cylindrical Structures. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 233-255.	0.1	0
158	Casimir Interaction. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 259-271.	0.1	0
159	Dispersion Interaction in Spherical Structures. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 339-371.	0.1	0
160	Statistical Physics. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 61-68.	0.1	0
161	Van der Waals Force. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 135-151.	0.1	0
162	Van der Waals Interaction in Planar Structures. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 153-207.	0.1	0

#	Article	IF	CITATIONS
163	THE THERMAL CASIMIR EFFECT: SATURATION. , 2010, , .		Ο
164	CAN THE RADIATION FROM CELLULAR PHONES HAVE IMPORTANT EFFECTS ON THE FORCES BETWEEN BIOLOGICALTISSUE-COMPONENTS?. , 2006, , 355-366.		0