Terry J Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5401213/publications.pdf

Version: 2024-02-01

250 papers 14,623 citations

65 h-index 25770 108 g-index

280 all docs

280 docs citations

times ranked

280

7638 citing authors

#	Article	IF	Citations
1	2021 update on thyroid-associated ophthalmopathy. Journal of Endocrinological Investigation, 2022, 45, 235-259.	1.8	44
2	Symptomatic and restorative therapies in neuromyelitis optica spectrum disorders. Journal of Neurology, 2022, 269, 1786-1801.	1.8	8
3	Teprotumumab Efficacy, Safety, and Durability in Longer-Duration Thyroid Eye Disease and Re-treatment. Ophthalmology, 2022, 129, 438-449.	2.5	64
4	It Takes Two to Tango: IGF-I and TSH Receptors in Thyroid Eye Disease. Journal of Clinical Endocrinology and Metabolism, 2022, 107, S1-S12.	1.8	17
5	Does Anatomic Region-Specific Gene Expression Underlie Thyroid Eye Disease?. Ophthalmic Plastic and Reconstructive Surgery, 2022, Publish Ahead of Print, .	0.4	0
6	Longitudinal Retinal Changes in <scp>MOGAD</scp> . Annals of Neurology, 2022, 92, 476-485.	2.8	20
7	Teprotumumab Divergently Alters Fibrocyte Gene Expression: Implications for Thyroid-associated Ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e4037-e4047.	1.8	2
8	Teprotumumab for Optic Neuropathy in Thyroid Eye Disease. JAMA Ophthalmology, 2021, 139, 244.	1.4	29
9	Slit2 Regulates Hyaluronan & Dytokine Synthesis in Fibrocytes: Potential Relevance to Thyroid-Associated Ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e20-e33.	1.8	16
10	Teprotumumab in Clinical Practice: Recommendations and Considerations From the OPTIC Trial Investigators. Journal of Neuro-Ophthalmology, 2021, 41, 461-468.	0.4	19
11	Lessons Learned from Targeting IGF-I Receptor in Thyroid-Associated Ophthalmopathy. Cells, 2021, 10, 383.	1.8	10
12	Insulin-Like Growth Factor Pathway and the Thyroid. Frontiers in Endocrinology, 2021, 12, 653627.	1.5	29
13	Teprotumumab for patients with active thyroid eye disease: a pooled data analysis, subgroup analyses, and off-treatment follow-up results from two randomised, double-masked, placebo-controlled, multicentre trials. Lancet Diabetes and Endocrinology,the, 2021, 9, 360-372.	5. 5	91
14	Comment on the 2021 EUGOGO Clinical Practice Guidelines for the Medical Management of Graves' Orbitopathy. European Journal of Endocrinology, 2021, 185, L13-L14.	1.9	9
15	Efficacy and Safety of Teprotumumab in Thyroid Eye Disease. Therapeutics and Clinical Risk Management, 2021, Volume 17, 1219-1230.	0.9	10
16	Therapeutic IGF-I receptor inhibition alters fibrocyte immune phenotype in thyroid-associated ophthalmopathy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
17	Teprotumumab Treatment for Thyroid-Associated Ophthalmopathy. European Thyroid Journal, 2020, 9, 31-39.	1.2	5
18	Thyroid-associated ophthalmopathy: Emergence of teprotumumab as a promising medical therapy. Best Practice and Research in Clinical Endocrinology and Metabolism, 2020, 34, 101383.	2.2	10

#	Article	IF	CITATIONS
19	High-throughput investigation of molecular and cellular biomarkers in NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	20
20	Slit2 May Underlie Divergent Induction by Thyrotropin of IL-23 and IL-12 in Human Fibrocytes. Journal of Immunology, 2020, 204, 1724-1735.	0.4	17
21	Teprotumumab as a Novel Therapy for Thyroid-Associated Ophthalmopathy. Frontiers in Endocrinology, 2020, 11, 610337.	1.5	4
22	Cohort profile: a collaborative multicentre study of retinal optical coherence tomography in 539 patients with neuromyelitis optica spectrum disorders (CROCTINO). BMJ Open, 2020, 10, e035397.	0.8	10
23	Teprotumumab: a novel therapeutic monoclonal antibody for thyroid-associated ophthalmopathy. Expert Opinion on Investigational Drugs, 2020, 29, 645-649.	1.9	13
24	Teprotumumab in Thyroid-Associated Ophthalmopathy: Rationale for Therapeutic Insulin-Like Growth Factor–I Receptor Inhibition. Journal of Neuro-Ophthalmology, 2020, 40, 74-83.	0.4	5
25	Teprotumumab for the Treatment of Active Thyroid Eye Disease. New England Journal of Medicine, 2020, 382, 341-352.	13.9	375
26	Challenges in Orphan Drug Development: Identification of Effective Therapy for Thyroid-Associated Ophthalmopathy. Annual Review of Pharmacology and Toxicology, 2019, 59, 129-148.	4.2	25
27	Neuromyelitis optica spectrum disorder. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e580.	3.1	92
28	Collaborative International Research in Clinical and Longitudinal Experience Study in NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e583.	3.1	33
29	Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocrine Reviews, 2019, 40, 236-267.	8.9	117
30	Cerebrospinal fluid biomarkers for predicting development of multiple sclerosis in acute optic neuritis: a population-based prospective cohort study. Journal of Neuroinflammation, 2019, 16, 59.	3.1	39
31	Response to Letter to the Editor: "Elevated Serum Tetrac in Graves Disease: Potential Pathogenic Role in Thyroid-Associated Ophthalmopathy― Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1077-1078.	1.8	0
32	HIF2A–LOX Pathway Promotes Fibrotic Tissue Remodeling in Thyroid-Associated Orbitopathy. Endocrinology, 2019, 160, 20-35.	1.4	65
33	Potential Roles of CD34+ Fibrocytes Masquerading as Orbital Fibroblasts in Thyroid-Associated Ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 581-594.	1.8	27
34	Will biological agents supplant systemic glucocorticoids as the first-line treatment for thyroid-associated ophthalmopathy?. European Journal of Endocrinology, 2019, 181, D27-D43.	1.9	19
35	40 YEARS OF IGF1: IGF1 receptor and thyroid-associated ophthalmopathy. Journal of Molecular Endocrinology, 2018, 61, T29-T43.	1.1	50
36	Magnetic resonance imaging findings at the first episode of acute optic neuritis. Multiple Sclerosis and Related Disorders, 2018, 20, 30-36.	0.9	23

#	Article	IF	CITATIONS
37	New advances in understanding thyroid-associated ophthalmopathy and the potential role for insulin-like growth factor-I receptor. F1000Research, 2018, 7, 134.	0.8	15
38	Is there potential for the approval of monoclonal antibodies to treat thyroid-associated ophthalmopathy?. Expert Opinion on Orphan Drugs, 2018, 6, 593-595.	0.5	7
39	Slit2 Modulates the Inflammatory Phenotype of Orbit-Infiltrating Fibrocytes in Graves' Disease. Journal of Immunology, 2018, 200, 3942-3949.	0.4	31
40	CD34 \hat{a}^{-2} Orbital Fibroblasts From Patients With Thyroid-Associated Ophthalmopathy Modulate TNF- $\hat{l}\pm$ Expression in CD34+ Fibroblasts and Fibrocytes., 2018, 59, 2615.		18
41	Graves' Ophthalmopathy. Endocrinology, 2018, , 451-488.	0.1	O
42	TSHR as a therapeutic target in Graves' disease. Expert Opinion on Therapeutic Targets, 2017, 21, 427-432.	1.5	27
43	Graves' Disease. New England Journal of Medicine, 2017, 376, 184-185.	13.9	42
44	Teprotumumab for Thyroid-Associated Ophthalmopathy. New England Journal of Medicine, 2017, 376, 1748-1761.	13.9	480
45	A population-based prospective study of optic neuritis. Multiple Sclerosis Journal, 2017, 23, 1893-1901.	1.4	81
46	Response to Krieger et al. re: "TSHR/IGF-1R Cross-Talk, Not IGF-1R Stimulating Antibodies, Mediates Graves' Ophthalmopathy Pathogenesis―(Thyroid 2017;27:746–747). Thyroid, 2017, 27, 1458-1459.	2.4	10
47	De novo triiodothyronine formation from thyrocytes activated by thyroid-stimulating hormone. Journal of Biological Chemistry, 2017, 292, 15434-15444.	1.6	27
48	Elevated Serum Tetrac in Graves Disease: Potential Pathogenic Role in Thyroid-Associated Ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 776-785.	1.8	11
49	CD40 Expression in Fibrocytes Is Induced by TSH: Potential Synergistic Immune Activation. PLoS ONE, 2016, 11, e0162994.	1.1	8
50	Rationale for therapeutic targeting insulin-like growth factor-1 receptor and bone marrow-derived fibrocytes in thyroid-associated ophthalmopathy. Expert Review of Ophthalmology, 2016, 11, 77-79.	0.3	5
51	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e277.	3.1	39
52	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e276.	3.1	35
53	Intersection of Chemokine and TSH Receptor Pathways in Human Fibrocytes: Emergence of CXCL-12/CXCR4 Cross Talk Potentially Relevant to Thyroid-Associated Ophthalmopathy. Endocrinology, 2016, 157, 3779-3787.	1.4	12
54	Thyrotropin and CD40L Stimulate Interleukin-12 Expression in Fibrocytes: Implications for Pathogenesis of Thyroid-Associated Ophthalmopathy. Thyroid, 2016, 26, 1768-1777.	2.4	17

#	Article	IF	Citations
55	Aquaporin-4 lgG autoimmune syndrome and immunoreactivity associated with thyroid cancer. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e252.	3.1	11
56	Graves' Disease. New England Journal of Medicine, 2016, 375, 1552-1565.	13.9	847
57	Update on thyroid-associated Ophthalmopathy with a special emphasis on the ocular surface. Clinical Diabetes and Endocrinology, 2016, 2, 19.	1.3	23
58	Building the Case for Insulin-Like Growth Factor Receptor-I Involvement in Thyroid-Associated Ophthalmopathy. Frontiers in Endocrinology, 2016, 7, 167.	1.5	31
59	Graves' Ophthalmopathy. Endocrinology, 2016, , 1-39.	0.1	0
60	Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto's thyroiditis. Clinical and Experimental Immunology, 2015, 180, 58-69.	1.1	40
61	Disrupted TSH Receptor Expression in Female Mouse Lung Fibroblasts Alters Subcellular IGF-1 Receptor Distribution. Endocrinology, 2015, 156, 4731-4740.	1.4	6
62	Characterization of Regulatory B Cells in Graves' Disease and Hashimoto's Thyroiditis. PLoS ONE, 2015, 10, e0127949.	1.1	41
63	Risk Factors for Developing Thyroid-Associated Ophthalmopathy Among Individuals With Graves Disease. JAMA Ophthalmology, 2015, 133, 290.	1.4	120
64	Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder. JAMA Neurology, 2015, 72, 815.	4.5	59
65	TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy. Nature Reviews Endocrinology, 2015, 11, 171-181.	4.3	78
66	Challenges and opportunities in designing clinical trials for neuromyelitis optica. Neurology, 2015, 84, 1805-1815.	1.5	39
67	Pentraxin-3 Is a TSH-Inducible Protein in Human Fibrocytes and Orbital Fibroblasts. Endocrinology, 2015, 156, 4336-4344.	1.4	20
68	B lymphocytes in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e104.	3.1	132
69	Update on biomarkers in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e134.	3.1	104
70	Emerging Role of Fibrocytes in the Pathogenesis of Thyroid Eye Disease., 2015,, 23-32.		0
71	Rituximab (Rituxan) Therapy for Severe Thyroid-Associated Ophthalmopathy Diminishes IGF-1R+ T Cells. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1294-E1299.	1.8	19
72	Teprotumumab, an IGF-1R Blocking Monoclonal Antibody Inhibits TSH and IGF-1 Action in Fibrocytes. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1635-E1640.	1.8	119

#	Article	IF	Citations
73	PI3K/AKT Pathway Mediates Induction of IL-1RA by TSH in Fibrocytes: Modulation by PTEN. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3363-3372.	1.8	28
74	Cytokines as villains and potential therapeutic targets in thyroid-associated ophthalmopathy: from bench to bedside. Expert Review of Ophthalmology, 2014, 9, 227-234.	0.3	22
75	Regulation of IL-1 Receptor Antagonist by TSH in Fibrocytes and Orbital Fibroblasts. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E625-E633.	1.8	28
76	Advances in Understanding Autoimmune Pituitary Disease: Standardized Methods for Autoantibody Detection. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1589-1592.	1.8	1
77	Expression of Thyrotropin Receptor, Thyroglobulin, Sodium-Iodide Symporter, and Thyroperoxidase by Fibrocytes Depends on AIRE. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1236-E1244.	1.8	52
78	Current Concepts in the Molecular Pathogenesis of Thyroid-Associated Ophthalmopathy. , 2014, 55, 1735.		181
79	Human Fibrocytes Express Multiple Antigens Associated With Autoimmune Endocrine Diseases. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E796-E803.	1.8	18
80	Is IGF-I Receptor a Target for Autoantibody Generation in Graves' Disease?. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 515-518.	1.8	30
81	Divergent Expression of IL-1 Receptor Antagonists in CD34+ Fibrocytes and Orbital Fibroblasts in Thyroid-associated Ophthalmopathy: Contribution of Fibrocytes to Orbital Inflammation. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2783-2790.	1.8	24
82	Thyrotropin Regulates IL-6 Expression in CD34+ Fibrocytes: Clear Delineation of Its cAMP-Independent Actions. PLoS ONE, 2013, 8, e75100.	1.1	50
83	Histopathology of Brow Fat in Thyroid-Associated Orbitopathy. Ophthalmic Plastic and Reconstructive Surgery, 2012, 28, 27-29.	0.4	24
84	Human fibrocytes coexpress thyroglobulin and thyrotropin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7427-7432.	3.3	77
85	Increased Expression of TSH Receptor by Fibrocytes in Thyroid-Associated Ophthalmopathy Leads to Chemokine Production. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E740-E746.	1.8	72
86	Treating the thyroid in the presence of Graves' ophthalmopathy. Best Practice and Research in Clinical Endocrinology and Metabolism, 2012, 26, 313-324.	2.2	30
87	Role of insulin-like growth factor-1 (IGF-1) pathway in the pathogenesis of Graves' orbitopathy. Best Practice and Research in Clinical Endocrinology and Metabolism, 2012, 26, 291-302.	2.2	97
88	Integrative Continuum: Accelerating Therapeutic Advances in Rare Autoimmune Diseases. Annual Review of Pharmacology and Toxicology, 2012, 52, 523-547.	4.2	8
89	Nuclear Targeting of IGF-1 Receptor in Orbital Fibroblasts from Graves' Disease: Apparent Role of ADAM17. PLoS ONE, 2012, 7, e34173.	1.1	21
90	Interleukin-6 Production in CD40-Engaged Fibrocytes in Thyroid-Associated Ophthalmopathy: Involvement of Akt and NF-κB., 2012, 53, 7746.		56

#	Article	IF	CITATIONS
91	Thyroid Eye Disease: Towards an Evidence Base for Treatment in the 21st Century. Current Neurology and Neuroscience Reports, 2012, 12, 318-324.	2.0	36
92	Pathogenesis and Medical Management of Thyroid Eye Disease., 2012,, 1213-1223.		0
93	Targeted biological therapies for Graves' disease and thyroidâ€associated ophthalmopathy. Focus on Bâ€cell depletion with Rituximab. Clinical Endocrinology, 2011, 74, 1-8.	1.2	46
94	Fibroblasts Expressing the Thyrotropin Receptor Overarch Thyroid and Orbit in Graves' Disease. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3827-3837.	1.8	48
95	Does selenium supplementation improve Graves ophthalmopathy?. Nature Reviews Endocrinology, 2011, 7, 505-506.	4.3	6
96	Other Potential Therapeutic Targets in Thyroid Orbitopathy. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2011, 11, 112-117.	0.5	0
97	Divergent Sp1 Protein Levels May Underlie Differential Expression of UDP-Glucose Dehydrogenase by Fibroblasts. Journal of Biological Chemistry, 2011, 286, 24487-24499.	1.6	26
98	Orbital fibrosis in a mouse model of Graves' disease induced by genetic immunization of thyrotropin receptor cDNA. Journal of Endocrinology, 2011, 210, 369-377.	1.2	63
99	The Putative Role of Fibrocytes in the Pathogenesis of Graves' Disease. , 2011, , 271-284.		0
100	Potential role for bone marrow-derived fibrocytes in the orbital fibroblast heterogeneity associated with thyroid-associated ophthalmopathy. Clinical and Experimental Immunology, 2010, 162, 24-31.	1.1	22
101	PGE2 Induces IL-6 in Orbital Fibroblasts through EP2 Receptors and Increased Gene Promoter Activity: Implications to Thyroid-Associated Ophthalmopathy. PLoS ONE, 2010, 5, e15296.	1.1	36
102	Transforming growth factor \hat{l}^2 (sub>1 and laminin-111 cooperate in the induction of interleukin-16 expression in synovial fibroblasts from patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2010, 69, 270-275.	0.5	18
103	Insulin-Like Growth Factor-I Regulation of Immune Function: A Potential Therapeutic Target in Autoimmune Diseases?. Pharmacological Reviews, 2010, 62, 199-236.	7.1	226
104	Increased Generation of Fibrocytes in Thyroid-Associated Ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 430-438.	1.8	199
105	Pathogenesis of Graves' orbitopathy: A 2010 update. Journal of Endocrinological Investigation, 2010, 33, 414-421.	1.8	81
106	Rituximab Treatment of Patients with Severe, Corticosteroid-Resistant Thyroid-Associated Ophthalmopathy. Ophthalmology, 2010, 117, 133-139.e2.	2.5	159
107	Immunopathogenesis of Thyroid Eye Disease: Emerging Paradigms. Survey of Ophthalmology, 2010, 55, 215-226.	1.7	97
108	Orbital Fibroblasts from Patients with Thyroid-Associated Ophthalmopathy Overexpress CD40: CD154 Hyperinduces IL-6, IL-8, and MCP-1., 2009, 50, 2262.		121

#	Article	IF	Citations
109	Divergent Frequencies of IGF-I Receptor-Expressing Blood Lymphocytes in Monozygotic Twin Pairs Discordant for Graves' Disease: Evidence for a Phenotypic Signature Ascribable to Nongenetic Factors. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1797-1802.	1.8	12
110	Characterization of the anaemia associated with Graves' disease. Clinical Endocrinology, 2009, 70, 781-787.	1.2	34
111	Development of Criteria for Evaluating Clinical Response in Thyroid Eye Disease Using a Modified Delphi Technique. JAMA Ophthalmology, 2009, 127, 1155.	2.6	30
112	Regulation of Lymphocyte Function by PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}^3</mml:mi></mml:math> : Relevance to Thyroid Eye Disease-Related Inflammation. PPAR Research, 2008, 2008, 1-12.	1.1	27
113	Cytokines, Graves' Disease, and Thyroid-Associated Ophthalmopathy. Thyroid, 2008, 18, 953-958.	2.4	108
114	Evidence for an Association between Thyroid-Stimulating Hormone and Insulin-Like Growth Factor 1 Receptors: A Tale of Two Antigens Implicated in Graves' Disease. Journal of Immunology, 2008, 181, 4397-4405.	0.4	272
115	B Cells from Patients with Graves' Disease Aberrantly Express the IGF-1 Receptor: Implications for Disease Pathogenesis. Journal of Immunology, 2008, 181, 5768-5774.	0.4	104
116	Immune Mechanisms in Thyroid Eye Disease. Thyroid, 2008, 18, 959-965.	2.4	140
117	Unique Attributes of Orbital Fibroblasts and Global Alterations in IGF-1 Receptor Signaling Could Explain Thyroid-Associated Ophthalmopathy. Thyroid, 2008, 18, 983-988.	2.4	93
118	Biologic Therapeutics in Thyroid-Associated Ophthalmopathy: Translating Disease Mechanism into Therapy. Thyroid, 2008, 18, 967-971.	2.4	48
119	Recent insights into the pathogenesis and management of thyroid-associated ophthalmopathy. Current Opinion in Endocrinology, Diabetes and Obesity, 2008, 15, 446-452.	1.2	29
120	Pathophysiology of Graves' Orbitopathy. , 2008, , 2913-2926.		3
121	TGFâ€beta enhances the lamininâ€1â€induced production of ILâ€16 in RA synovial fibroblasts by elevation of beta1â€integrin expression. FASEB Journal, 2008, 22, 664.13.	0.2	0
122	Jak2 Dampens the Induction by IL- $\hat{1}^2$ of Prostaglandin Endoperoxide H Synthase 2 Expression in Human Orbital Fibroblasts: Evidence for Divergent Influence on the Prostaglandin E2 Biosynthetic Pathway. Journal of Immunology, 2007, 179, 7147-7156.	0.4	6
123	B Cell Depletion in Graves' Disease: The Right Answer to the Wrong Question?. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1620-1622.	1.8	11
124	Hyaluronan Accumulation in Thyroid Tissue: Evidence for Contributions from Epithelial Cells and Fibroblasts. Endocrinology, 2007, 148, 54-62.	1.4	36
125	Aberrant Expression of the Insulin-Like Growth Factor-1 Receptor by T Cells from Patients with Graves' Disease May Carry Functional Consequences for Disease Pathogenesis. Journal of Immunology, 2007, 178, 3281-3287.	0.4	129
126	Is a common therapy for autoimmune disease possible?. Future Rheumatology, 2007, 2, 333-335.	0.2	0

#	Article	IF	CITATIONS
127	Circulating mononuclear cells from euthyroid patients with thyroid-associated ophthalmopathy exhibit characteristic phenotypes. Clinical and Experimental Immunology, 2007, 148, 64-71.	1.1	20
128	Immunoglobulin G from Patients with Graves' Disease Induces Interleukin-16 and RANTES Expression in Cultured Human Thyrocytes: A Putative Mechanism for T-Cell Infiltration of the Thyroid in Autoimmune Disease. Endocrinology, 2006, 147, 1941-1949.	1.4	49
129	Molecular Pathology of Mul̀`ller's Muscle in Graves' Ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1159-1167.	1.8	33
130	T Helper Type 1 and Type 2 Cytokines Exert Divergent Influence on the Induction of Prostaglandin E2 and Hyaluronan Synthesis by Interleukin- $1^{\hat{1}^2}$ in Orbital Fibroblasts: Implications for the Pathogenesis of Thyroid-Associated Ophthalmopathy. Endocrinology, 2006, 147, 13-19.	1.4	89
131	Interleukin-6 release from human abdominal adipose cells is regulated by thyroid-stimulating hormone: effect of adipocyte differentiation and anatomic depot. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1140-E1144.	1.8	55
132	Interleukin-4 Induces 15-Lipoxygenase-1 Expression in Human Orbital Fibroblasts from Patients with Graves Disease. Journal of Biological Chemistry, 2006, 281, 18296-18306.	1.6	38
133	Monoclonal Pathogenic Antibodies to the Thyroid-Stimulating Hormone Receptor in Graves' Disease with Potent Thyroid-Stimulating Activity but Differential Blocking Activity Activate Multiple Signaling Pathways. Journal of Immunology, 2006, 176, 5084-5092.	0.4	61
134	More Than Structural Cells, Fibroblasts Create and Orchestrate the Tumor Microenvironment. Immunological Investigations, 2006, 35, 297-325.	1.0	99
135	Functional Assessment of Fibroblast Heterogeneity by the Cell-Surface Glycoprotein Thy-1., 2006,, 32-39.		1
136	ILâ€1 Induces Lower sILâ€1ra and Higher icILâ€1ra ILâ€1ra Protein Expression in Orbital vs. Dermal Fibroblasts. FASEB Journal, 2006, 20, A640.	0.2	0
137	Isolation and Phenotypic Characterization of Lung Fibroblasts. , 2005, 117, 115-127.		63
138	Insights into the role of fibroblasts in human autoimmune diseases. Clinical and Experimental Immunology, 2005, 141, 388-397.	1.1	88
139	Rosiglitazone-Induced Proptosis. JAMA Ophthalmology, 2005, 123, 119.	2.6	33
140	Induction by IL- $1\hat{l}^2$ of Tissue Inhibitor of Metalloproteinase-1 in Human Orbital Fibroblasts: Modulation of Gene Promoter Activity by IL-4 and IFN- \hat{l}^3 . Journal of Immunology, 2005, 174, 3072-3079.	0.4	49
141	lL- $1\hat{l}^2$ Induces IL-6 Expression in Human Orbital Fibroblasts: Identification of an Anatomic-Site Specific Phenotypic Attribute Relevant to Thyroid-Associated Ophthalmopathy. Journal of Immunology, 2005, 175, 1310-1319.	0.4	115
142	Immunoglobulins from Patients with Graves' Disease Induce Hyaluronan Synthesis in Their Orbital Fibroblasts through the Self-Antigen, Insulin-Like Growth Factor-I Receptor. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5076-5080.	1.8	222
143	Synovial Fibroblasts from Patients with Rheumatoid Arthritis, Like Fibroblasts from Graves' Disease, Express High Levels of IL-16 When Treated with Igs against Insulin-Like Growth Factor-1 Receptor. Journal of Immunology, 2004, 173, 3564-3569.	0.4	67
144	A novel ELISpot method for adherent cells. Journal of Immunological Methods, 2004, 291, 63-70.	0.6	16

#	Article	IF	CITATIONS
145	Novel aspects of orbital fibroblast pathology. Journal of Endocrinological Investigation, 2004, 27, 246-253.	1.8	54
146	Thy-1 Expression in Human Fibroblast Subsets Defines Myofibroblastic or Lipofibroblastic Phenotypes. American Journal of Pathology, 2003, 163, 1291-1300.	1.9	237
147	Current Perspective on the Pathogenesis of Graves' Disease and Ophthalmopathy. Endocrine Reviews, 2003, 24, 802-835.	8.9	415
148	Immunoglobulin Activation of T Cell Chemoattractant Expression in Fibroblasts from Patients with Graves' Disease Is Mediated Through the Insulin-Like Growth Factor I Receptor Pathway. Journal of Immunology, 2003, 170, 6348-6354.	0.4	246
149	Cytokine-Induced Lymphocyte Chemoattraction from Cultured Human Thyrocytes: Evidence for Interleukin-16 and Regulated upon Activation, Normal T Cell Expressed, and Secreted Expression. Endocrinology, 2003, 144, 2856-2864.	1.4	17
150	The Putative Role of Fibroblasts in the Pathogenesis of Graves' Disease: Evidence for the Involvement of the Insulin-like Growth Factor-1 Receptor in Fibroblast Activation. Autoimmunity, 2003, 36, 409-415.	1.2	61
151	Robust induction of PGHS-2 by IL-1 in orbital fibroblasts results from low levels of IL-1 receptor antagonist expression. American Journal of Physiology - Cell Physiology, 2003, 284, C1429-C1437.	2.1	22
152	Unique properties of orbital connective tissue underlie its involvement in Graves' disease. Minerva Endocrinologica, 2003, 28, 213-22.	1.7	8
153	Orbital Fibroblasts Exhibit a Novel Pattern of Responses to Proinflammatory Cytokines: Potential Basis for the Pathogenesis of Thyroid-Associated Ophthalmopathy. Thyroid, 2002, 12, 197-203.	2.4	67
154	lgs from Patients with Graves' Disease Induce the Expression of T Cell Chemoattractants in Their Fibroblasts. Journal of Immunology, 2002, 168, 942-950.	0.4	153
155	Insights Into the Pathogenesis of Thyroid-Associated Orbitopathy. JAMA Ophthalmology, 2002, 120, 380.	2.6	146
156	Up-regulation of Prostaglandin E2 Synthesis by Interleukin- $1\hat{l}^2$ in Human Orbital Fibroblasts Involves Coordinate Induction of Prostaglandin-Endoperoxide H Synthase-2 and Glutathione-dependent Prostaglandin E2 Synthase Expression. Journal of Biological Chemistry, 2002, 277, 16355-16364.	1.6	142
157	Orbital Fibroblast Heterogeneity May Determine the Clinical Presentation of Thyroid-Associated Ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 385-392.	1.8	190
158	Cytoplasmic Prostaglandin E2 Synthase Is Dominantly Expressed in Cultured KAT-50 Thyrocytes, Cells That Express Constitutive Prostaglandin-endoperoxide H Synthase-2. Journal of Biological Chemistry, 2002, 277, 36897-36903.	1.6	14
159	Fibroblast biology in thyroid diseases. Current Opinion in Endocrinology, Diabetes and Obesity, 2002, 9, 393-400.	0.6	16
160	Fibroblast subsets in the human orbit: Thy-1+ and Thy-1- subpopulations exhibit distinct phenotypes. European Journal of Immunology, 2002, 32, 477-485.	1.6	138
161	Prostaglandin endoperoxide H synthase expression in human thyroid epithelial cells. American Journal of Physiology - Cell Physiology, 2001, 280, C701-C708.	2.1	19
162	Advanced breast biopsy instrumentation (ABBI) and management of nonpalpable breast abnormalities: a community hospital experience. Breast, 2001, 10, 421-426.	0.9	3

#	Article	IF	Citations
163	Fibroblasts as Sentinel Cells. Chest, 2001, 120, S53-S55.	0.4	58
164	Participation of Orbital Fibroblasts in the Inflammation of Graves' Ophthalmopathy. Growth Hormone, 2001, , 83-98.	0.2	1
165	Functional TSH receptor in human abdominal preadipocytes and orbital fibroblasts. American Journal of Physiology - Cell Physiology, 2000, 279, C335-C340.	2.1	122
166	Cultured Human Fibroblasts Express Constitutive IL-16 mRNA: Cytokine Induction of Active IL-16 Protein Synthesis Through a Caspase-3-Dependent Mechanism. Journal of Immunology, 2000, 164, 3806-3814.	0.4	96
167	Peroxisome Proliferator Activator Receptor-Î ³ Agonists and 15-Deoxy-Î [*] 12,1412,14-PGJ2 Induce Apoptosis in Normal and Malignant B-Lineage Cells. Journal of Immunology, 2000, 165, 6941-6948.	0.4	148
168	Graves' Dermopathy. Growth Hormone, 2000, , 289-300.	0.2	0
169	Leukoregulin upregulation of prostaglandin endoperoxide H synthase-2 expression in human orbital fibroblasts. American Journal of Physiology - Cell Physiology, 1999, 277, C1075-C1085.	2.1	47
170	Expression of Hyaluronan Synthase Messenger Ribonucleic Acids and Their Induction by Interleukin-1β in Human Orbital Fibroblasts: Potential Insight into the Molecular Pathogenesis of Thyroid-Associated Ophthalmopathy1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4079-4084.	1.8	89
171	The putative role of prostaglandin endoperoxide H synthase-2 in the pathogenesis of thyroid-associated orbitopathy. Experimental and Clinical Endocrinology and Diabetes, 1999, 107, S160-S163.	0.6	14
172	HMC-1 Mast Cells Activate Human Orbital Fibroblasts in Coculture: Evidence for Up-Regulation of Prostaglandin E2 and Hyaluronan Synthesis*. Endocrinology, 1999, 140, 3518-3525.	1.4	50
173	Prostaglandin-endoperoxide H Synthase-2 Expression in Human Thyroid Epithelium. Journal of Biological Chemistry, 1999, 274, 15622-15632.	1.6	30
174	CD40 Expression in Human Thyroid Tissue: Evidence for Involvement of Multiple Cell Types in Autoimmune and Neoplastic Diseases. Thyroid, 1999, 9, 749-755.	2.4	65
175	The Effect of Cigarette Smoke Constituents on the Expression of HLA-DR in Orbital Fibroblasts Derived from Patients with Graves Ophthalmopathy. Ophthalmic Plastic and Reconstructive Surgery, 1999, 15, 260-271.	0.4	44
176	HMC-1 Mast Cells Activate Human Orbital Fibroblasts in Coculture: Evidence for Up-Regulation of Prostaglandin E2 and Hyaluronan Synthesis. Endocrinology, 1999, 140, 3518-3525.	1.4	16
177	Assessment of Rapid Morphological Changes Associated with Elevated cAMP Levels in Human Orbital Fibroblasts. Experimental Cell Research, 1998, 245, 360-367.	1.2	43
178	CYCLOOXYGENASES AS THE PRINCIPAL TARGETS FOR THE ACTIONS OF NSAIDs. Rheumatic Disease Clinics of North America, 1998, 24, 501-523.	0.8	38
179	Activation of Human Orbital Fibroblasts through CD40 Engagement Results in a Dramatic Induction of Hyaluronan Synthesis and Prostaglandin Endoperoxide H Synthase-2 Expression. Journal of Biological Chemistry, 1998, 273, 29615-29625.	1.6	175
180	Molecular Cloning and Characterization of the Human and Mouse UDP-Glucose Dehydrogenase Genes. Journal of Biological Chemistry, 1998, 273, 25117-25124.	1.6	133

#	Article	IF	Citations
181	Leukoregulin induction of protein expression in human orbital fibroblasts: Evidence for anatomical site-restricted cytokine-target cell interactions. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8904-8909.	3.3	65
182	Human orbital fibroblasts are activated through CD40 to induce proinflammatory cytokine production. American Journal of Physiology - Cell Physiology, 1998, 274, C707-C714.	2.1	140
183	Cytokine-mediated PGE ₂ expression in human colonic fibroblasts. American Journal of Physiology - Cell Physiology, 1998, 275, C988-C994.	2.1	54
184	CD40 engagement up-regulates cyclooxygenase-2 expression and prostaglandin E2 production in human lung fibroblasts. Journal of Immunology, 1998, 160, 1053-7.	0.4	98
185	Human Thyroid Fibroblasts Exhibit a Distinctive Phenotype in Culture: Characteristic Ganglioside Profile and Functional CD40 Expression*. Endocrinology, 1997, 138, 5576-5588.	1.4	36
186	Human Thyroid Fibroblasts Exhibit a Distinctive Phenotype in Culture: Characteristic Ganglioside Profile and Functional CD40 Expression. Endocrinology, 1997, 138, 5576-5588.	1.4	14
187	Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. American Journal of Pathology, 1997, 151, 317-22.	1.9	415
188	n-Butyrate induces plasminogen activator inhibitor type $1\mathrm{messenger}$ RNA in cultured Hep G2 cells. Hepatology, 1996, 23, 866-871.	3.6	22
189	Leukoregulin Induction of Prostaglandin-Endoperoxide H Synthase-2 in Human Orbital Fibroblasts. Journal of Biological Chemistry, 1996, 271, 22718-22728.	1.6	94
190	The putative role of cytokine-orbital fibroblast interactions in the pathogenesis of thyroid-associated ophthalmopathy. Orbit, 1996, 15, 137-146.	0.5	1
191	Evidence of adipocyte differentiation in human orbital fibroblasts in primary culture Journal of Clinical Endocrinology and Metabolism, 1996, 81, 3428-3431.	1.8	141
192	n-Butyrate induces plasminogen activator inhibitor type 1 messenger RNA in cultured Hep G2 cells. Hepatology, 1996, 23, 866-871.	3.6	6
193	Evidence of adipocyte differentiation in human orbital fibroblasts in primary culture. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 3428-3431.	1.8	98
194	Leukoregulin induction of prostaglandin-endoperoxide H synthase-2 in human orbital fibroblasts. An in vitro model for connective tissue inflammation. Journal of Biological Chemistry, 1996, 271, 22718-28.	1.6	26
195	Leukoregulin induces plasminogen activator inhibitor type 1 in human orbital fibroblasts. American Journal of Physiology - Cell Physiology, 1995, 269, C359-C366.	2.1	30
196	Leukoregulin is a potent inducer of hyaluronan synthesis in cultured human orbital fibroblasts. American Journal of Physiology - Cell Physiology, 1995, 268, C382-C388.	2.1	108
197	Human orbital fibroblasts in culture express ganglioside profiles distinct from those in dermal fibroblasts Journal of Clinical Endocrinology and Metabolism, 1995, 80, 2668-2674.	1.8	19
198	Prostaglandin E2 alters human orbital fibroblast shape through a mechanism involving the generation of cyclic adenosine monophosphate Journal of Clinical Endocrinology and Metabolism, 1995, 80, 3553-3560.	1.8	20

#	Article	IF	Citations
199	Evidence for cellular heterogeneity in primary cultures of human orbital fibroblasts Journal of Clinical Endocrinology and Metabolism, 1995, 80, 2620-2625.	1.8	100
200	Evidence for cellular heterogeneity in primary cultures of human orbital fibroblasts. Journal of Clinical Endocrinology and Metabolism, 1995, 80, 2620-2625.	1.8	82
201	Transforming growth factor-beta induces plasminogen activator inhibitor type-1 in cultured human orbital fibroblasts. Investigative Ophthalmology and Visual Science, 1995, 36, 1411-9.	3.3	23
202	Ultrastructure of cultured human orbital fibroblasts. Cell and Tissue Research, 1994, 278, 629-631.	1.5	15
203	Retinoic acid inhibition of thyroxine binding to human transthyretin. Biochimica Et Biophysica Acta - General Subjects, 1994, 1199, 76-80.	1.1	31
204	Prostaglandin E2 elicits a morphological change in cultured orbital fibroblasts from patients with Graves ophthalmopathy Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5094-5098.	3.3	67
205	Interferon Gamma Regulation of De Novo Protein Synthesis in Human Dermal Fibroblasts in Culture Is Anatomic Site Dependent. Journal of Investigative Dermatology, 1993, 100, 288-292.	0.3	31
206	Pleotrophic action of interferon gamma in human orbital fibroblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1181, 23-30.	1.8	20
207	Bidimensional gel electrophoretic analysis of protein synthesis and response to interferon-γ in cultured human dermal fibroblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1181, 300-306.	1.8	14
208	Human orbital fibroblasts in culture bind and respond to endothelin. American Journal of Physiology - Cell Physiology, 1993, 265, C138-C142.	2.1	28
209	Stereochemical requirements for the modulation by retinoic acid of thyroid hormone activation of Ca2+-ATPase and binding at the human erythrocyte membrane. Biochemical Journal, 1992, 284, 583-587.	1.7	19
210	Interferon-gamma is an inducer of plasminogen activator inhibitor type 1 in human orbital fibroblasts. American Journal of Physiology - Cell Physiology, 1992 , 263 , $C24$ - $C29$.	2.1	75
211	Regulation by glucocorticoids of interferon gammaâ€induced HLAâ€DR antigen expression in cultured human orbital fibroblasts. Clinical Endocrinology, 1992, 37, 59-63.	1.2	19
212	Induction of heme oxygenase mRNA by cobalt protoporphyrin in rat liver. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 221-224.	1.1	8
213	Retinoic acid can enhance the stimulation by thyroid hormone of heme oxygenase activity in the liver of thyroidectomized rats. Biochimica Et Biophysica Acta - General Subjects, 1991, 1075, 119-122.	1.1	12
214	Sex-dependent inhibition by retinoic acid of thyroid-hormone action on rabbit reticulocyte Ca2+-ATPase activity. Biochemical Journal, 1991, 273, 489-492.	1.7	0
215	Structure-activity relationships of retinoids as inhibitors of calmodulin-dependent human erythrocyte Ca2+-ATPase activity and calmodulin binding to membranes. Biochemical Journal, 1991, 277, 603-606.	1.7	6
216	Isolation and characterization of a novel liver-derived immunoinhibitory factor. Hepatology, 1991, 14, 888-894.	3.6	7

#	Article	IF	CITATIONS
217	Increased Induction of HLA-DR by Interferon-⟨i⟩γ⟨ i>in Cultured Fibroblasts Derived from Patients with Graves' Ophthalmopathy and Pretibial Dermopathy*. Journal of Clinical Endocrinology and Metabolism, 1991, 73, 307-313.	1.8	99
218	STIMULATION OF GLYCOSAMINOGLYCAN ACCUMULATION BY INTERFERON GAMMA IN CULTURED HUMAN RETROOCULAR FIBROBLASTS. Journal of Clinical Endocrinology and Metabolism, 1991, 72, 1169-1171.	1.8	134
219	Phylogenetic distribution and function of arylalkylamineN-acetyltransferase. BioEssays, 1990, 12, 30-33.	1.2	28
220	Retinoic Acid Inhibition of Hyaluronate Synthesis in Cultured Human Skin Fibroblasts*. Journal of Clinical Endocrinology and Metabolism, 1990, 70, 655-660.	1.8	17
221	Transcriptional regulation of the liver beta-galactoside alpha 2,6-sialyltransferase by glucocorticoids Journal of Biological Chemistry, 1990, 265, 17849-17853.	1.6	63
222	Retinoic acid inhibits calmodulin binding to human erythrocyte membranes and reduces membrane Ca2(+)-adenosine triphosphatase activity Journal of Clinical Investigation, 1990, 85, 1999-2003.	3.9	8
223	Transcriptional regulation of the liver beta-galactoside alpha 2,6-sialyltransferase by glucocorticoids. Journal of Biological Chemistry, 1990, 265, 17849-53.	1.6	51
224	Presence of Antibodies in the Sera of Patients with Graves' Disease Recognizing a 23 Kilodalton Fibroblast Protein*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 622-628.	1.8	76
225	Hormonal Regulation of Hyaluronate Synthesis in Cultured Human Fibroblasts: Evidence for Differences between Retroocular and Dermal Fibroblasts. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 1019-1023.	1.8	110
226	Retinoic acid blockade of imidazole-induced tyrosinase expression in B16 melanoma cultures: Similar effects of the active retinoid and triiodothyronine. Biochemical and Biophysical Research Communications, 1989, 162, 288-293.	1.0	7
227	Connective Tissue, Glycosaminoglycans, and Diseases the Thyroid*. Endocrine Reviews, 1989, 10, 366-391.	8.9	294
228	Retinole Acid Is a Modulator of Thyroid Hormone Activation of Ca2+-ATPase in the Human Erythrocyte Membrane. Journal of Biological Chemistry, 1989, 264, 687-689.	1.6	33
229	Retinoic acid is a modulator of thyroid hormone activation of Ca2+-ATPase in the human erythrocyte membrane. Journal of Biological Chemistry, 1989, 264, 687-9.	1.6	25
230	Inhibition of imidazole-induced tyrosinase activity by estradiol and estriol in cultured B 16/C3 melanoma cells. Journal of Cellular Physiology, 1988, 134, 497-502.	2.0	6
231	The effect of regression towards the mean on visual disability rating scales. Documenta Ophthalmologica, 1988, 70, 331-337.	1.0	1
232	N-butyrate increases c-erb A oncogene expression in human colon fibroblasts. Biochemical and Biophysical Research Communications, 1988, 150, 259-262.	1.0	4
233	Glucocorticoid regulation of glycosaminoglycan synthesis in cultured human skin fibroblasts: Evidence for a receptor-mediated mechanism involving effects on specific de novo protein synthesis. Metabolism: Clinical and Experimental, 1988, 37, 179-184.	1.5	35
234	3,3′,5-L-triiodothyronine but not L-thyroxine can block the induction of tyrosinase by imidazole in cultured B16 melanoma cells. Biochemical and Biophysical Research Communications, 1988, 155, 1293-1296.	1.0	2

#	Article	IF	Citations
235	Thyroid Hormone Regulation of Heme Synthesis in Rat Liver*. Endocrinology, 1988, 122, 1964-1967.	1.4	10
236	Multi-hormonal regulation of tyrosinase expression in B16/C3 melanoma cells in culture. Progress in Clinical and Biological Research, 1988, 262, 241-55.	0.2	2
237	Effect of testosterone on imidazole-induced tyrosinase expression in B16 melanoma cell culture. Cancer Research, 1988, 48, 3586-90.	0.4	7
238	Thyroid and Glucocorticoid Hormone Regulation of specific Protein Abundance in Cultured Human Skin Fibroblasts. Endocrine Research, 1987, 13, 61-67.	0.6	3
239	n-Butyrate inhibition of hyaluronate synthesis in cultured human fibroblasts Journal of Clinical Investigation, 1987, 79, 1493-1497.	3.9	31
240	Triiodothyronine Repression of Imidazole-Induced Tyrosinase Expression in B16 Melanoma Cells*. Endocrinology, 1986, 119, 2118-2123.	1.4	7
241	Glucocorticoid Regulation of Glycosaminoglycan Accumulation in Murine Fibroblasts. Endocrine Research, 1985, 11, 171-179.	0.6	0
242	Dexamethasone regulation of glycosaminoglycan synthesis in cultured human skin fibroblasts. Similar effects of glucocorticoid and thyroid hormones Journal of Clinical Investigation, 1984, 74, 2157-2163.	3.9	98
243	The consequences of inappropriate treatment because of failure to recognize the syndrome of pituitary and peripheral tissue resistance to thyroid hormone. Metabolism: Clinical and Experimental, 1983, 32, 822-834.	1.5	55
244	Thyroid hormone regulation of heme oxidation in the liver Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7537-7541.	3.3	18
245	Nuclear Binding of [¹²⁵ I]Triiodothyronine in Dispersed Cultured Skin Fibroblasts from Patients with Resistance to Thyroid Hormone*. Journal of Clinical Endocrinology and Metabolism, 1982, 55, 502-510.	1.8	39
246	Regulation of Glycosaminoglycan Synthesis by Thyroid Hormone in Vitro. Journal of Clinical Investigation, 1982, 70, 1066-1073.	3.9	108
247	THE EFFECT OF THYROID HORMONE ON GLYCOSAMINOGLYCAN ACCUMULATION IN HUMAN SKIN FIBROBLASTS. Endocrinology, 1981, 108, 2397-2399.	1.4	33
248	Glucocorticoids enhance glucose uptake and affect differentiation and beta-adrenergic responsiveness in muscle cell cultures. Cell Differentiation, 1981, 10, 101-107.	1.3	8
249	Ultrastructural features of osmotic shock in mussel gill cilia. Journal of Ultrastructure Research, 1977, 60, 34-43.	1.4	6
250	Letter to the editor regarding Bartalena et al. 2022. Journal of Endocrinological Investigation, 0, , .	1.8	1