Ranjan Parajuli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5401210/publications.pdf

Version: 2024-02-01

471371 434063 1,231 31 17 31 citations h-index g-index papers 34 34 34 1744 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renewable and Sustainable Energy Reviews, 2015, 43, 244-263.	8.2	209
2	Mitigating the current energy crisis in Nepal with renewable energy sources. Renewable and Sustainable Energy Reviews, 2019, 116, 109388.	8.2	164
3	Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Science of the Total Environment, 2019, 650, 2863-2879.	3.9	135
4	Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach. Science of the Total Environment, 2017, 598, 497-512.	3.9	63
5	Dairy and swine manure management – Challenges and perspectives for sustainable treatment technology. Science of the Total Environment, 2021, 778, 146319.	3.9	54
6	Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. Science of the Total Environment, 2017, 586, 226-240.	3.9	52
7	Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery. Journal of Cleaner Production, 2017, 142, 3859-3871.	4.6	46
8	Environmental screening of potential biomass for green biorefinery conversion. Journal of Cleaner Production, 2018, 189, 344-357.	4.6	45
9	Life Cycle Assessment of district heat production in a straw fired CHP plant. Biomass and Bioenergy, 2014, 68, 115-134.	2.9	44
10	Energy consumption projection of Nepal: An econometric approach. Renewable Energy, 2014, 63, 432-444.	4.3	41
11	Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Science of the Total Environment, 2018, 619-620, 127-143.	3.9	38
12	Access to energy in Mid/Far west region-Nepal from the perspective of energy poverty. Renewable Energy, 2011, 36, 2299-2304.	4.3	34
13	Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India. Energy, 2019, 188, 116101.	4.5	33
14	Multiâ€criteria assessment of yellow, green, and woody biomasses: preâ€screening of potential biomasses as feedstocks for biorefineries. Biofuels, Bioproducts and Biorefining, 2015, 9, 545-566.	1.9	32
15	Cradle to grave environmental impact evaluation of the consumption of potato and tomato products. Science of the Total Environment, 2021, 758, 143662.	3.9	29
16	Looking into the Danish energy system: Lesson to be learned by other communities. Renewable and Sustainable Energy Reviews, 2012, 16, 2191-2199.	8.2	28
17	A review on energy systems and GHG emissions reduction plan and policy of the Republic of Korea: Past, present, and future. Renewable and Sustainable Energy Reviews, 2017, 73, 1123-1130.	8.2	24
18	Energy flow and life cycle impact assessment of coffee-pepper production systems: An evaluation of conventional, integrated and organic farms in India. Environmental Impact Assessment Review, 2022, 92, 106687.	4.4	18

#	Article	IF	CITATIONS
19	A comparison of diesel, biodiesel and solar PV-based water pumping systems in the context of rural Nepal. International Journal of Sustainable Energy, 2014, 33, 536-553.	1.3	17
20	Life Cycle Assessment of Dietary Patterns in the United States: A Full Food Supply Chain Perspective. Sustainability, 2020, 12, 1586.	1.6	17
21	Techno-economic feasibility analysis of a 3-kW PV system installation in Nepal. Renewables: Wind, Water, and Solar, 2021, 8, .	2.5	17
22	Environmental performance of Miscanthus as a fuel alternative for district heat production. Biomass and Bioenergy, 2015, 72, 104-116.	2.9	15
23	Beyond oil and gas: possible future scenarios for the electricity sector in Saudi Arabia. International Journal of Sustainable Energy, 2015, 34, 71-92.	1.3	11
24	Potential biomass supply for agro-pellet production from agricultural crop residue in Nepal. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 149-153.	1.2	10
25	Protocol for life cycle assessment modeling of US fruit and vegetable supply chains- cases of processed potato and tomato products. Data in Brief, 2021, 34, 106639.	0.5	10
26	Holistically valuing public investments in agricultural water conservation. Agricultural Water Management, 2021, 252, 106900.	2.4	10
27	Supply chains for processed potato and tomato products in the United States will have enhanced resilience with planting adaptation strategies. Nature Food, 2021, 2, 862-872.	6.2	10
28	Economics of biodiesel production in the context of fulfilling 20% blending with petro-diesel in Nepal. International Journal of Sustainable Energy, 2014, 33, 435-447.	1.3	9
29	Solving the multifunctionality dilemma in biorefineries with a novel hybrid mass–energy allocation method. GCB Bioenergy, 2017, 9, 1674-1686.	2.5	9
30	Forest-based biomass supply potential and economics for the pellet production in Nepal. International Journal of Green Energy, 2018, 15, 1-7.	2.1	5
31	Economics of Biodiesel Production in the Context of Fulfilling 20% Blending with Petro-Diesel in Nepal. Journal of the Institute of Engineering, 2014, 10, 80-93.	0.3	O