Bryan W Brooks

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5400296/bryan-w-brooks-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

234	10,455	52	94
papers	citations	h-index	g-index
395	12,014	6.4 avg, IF	6.51
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
234	Water reuse for aquaculture: Comparative removal efficacy and aquatic hazard reduction of pharmaceuticals by a pond treatment system during a one year study. <i>Journal of Hazardous Materials</i> , 2022 , 421, 126712	12.8	6
233	Spatial Hazards of Antibiotic Resistance in Wastewater-Impacted Streams during Low Instream Flow Conditions. <i>ACS ES&T Water</i> , 2022 , 2, 457-464		0
232	Frontiers in quantifying wildlife behavioural responses to chemical pollution <i>Biological Reviews</i> , 2022 ,	13.5	2
231	Competitive superiority of N-fixing cyanobacteria when fixed N is scarce: Reconsiderations based on a model with heterocyst differentiation. <i>Ecological Modelling</i> , 2022 , 466, 109904	3	0
230	Global occurrence and probabilistic environmental health hazard assessment of per- and polyfluoroalkyl substances (PFASs) in groundwater and surface waters. <i>Science of the Total Environment</i> , 2021 , 816, 151535	10.2	4
229	Nitrogen form, concentration, and micronutrient availability affect microcystin production in cyanobacterial blooms. <i>Harmful Algae</i> , 2021 , 103, 102002	5.3	9
228	Differential influences of (\boxminus) anatoxin-a on photolocomotor behavior and gene transcription in larval zebrafish and fathead minnows. <i>Environmental Sciences Europe</i> , 2021 , 33,	5	1
227	Sustaining University Operations During the COVID-19 Pandemic. <i>Disaster Medicine and Public Health Preparedness</i> , 2021 , 1-9	2.8	4
226	The Role of Behavioral Ecotoxicology in Environmental Protection. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 5620-5628	10.3	28
225	Green Chemistry: A Framework for a Sustainable Future. <i>Organometallics</i> , 2021 , 40, 1801-1805	3.8	2
224	Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). <i>Environmental Pollution</i> , 2021 , 279, 116929	9.3	9
223	Signposts for Aquatic Toxicity Evaluation in China: Text Mining using Event-Driven Taxonomy within and among Regions. <i>Environmental Science & Environmental Science & Environ</i>	10.3	О
222	Green Chemistry: A Framework for a Sustainable Future. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 487-491	11	2
221	Green Chemistry: A Framework for a Sustainable Future. <i>Industrial & Discourse Industrial & Indu</i>	3.9	
220	Methamphetamine pollution elicits addiction in wild fish. <i>Journal of Experimental Biology</i> , 2021 , 224,	3	11
219	Sunlight concurrently reduces Prymnesium parvum elicited acute toxicity to fish and prymnesins. <i>Chemosphere</i> , 2021 , 263, 127927	8.4	4
218	De facto reuse at the watershed scale: Seasonal changes, population contributions, instream flows and water quality hazards of human pharmaceuticals. <i>Environmental Pollution</i> , 2021 , 268, 115888	9.3	1

(2020-2021)

217	Environmental Microcystin exposure in underlying NAFLD-induced exacerbation of neuroinflammation, blood-brain barrier dysfunction, and neurodegeneration are NLRP3 and S100B dependent. <i>Toxicology</i> , 2021 , 461, 152901	4.4	3
216	Synthesis of ecotoxicological studies on cyanotoxins in freshwater habitats - Evaluating the basis for developing thresholds protective of aquatic life in the United States. <i>Science of the Total Environment</i> , 2021 , 795, 148864	10.2	5
215	Comparative influences of dermal and inhalational routes of exposure on hazards of cleaning product ingredients among mammalian model organisms. <i>Environment International</i> , 2021 , 157, 106777	12.9	2
214	Stoichiometric Ecotoxicology for a Multisubstance World. <i>BioScience</i> , 2021 , 71, 132-147	5.7	2
213	Determination of citalopram in fish brain tissue: benefits of coupling laser diode thermal desorption with low- and high-resolution mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 4353-4361	4.4	3
212	Toward Sustainable Environmental Quality: Priority Research Questions for Asia. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 1485-1505	3.8	21
211	8:8 Perfluoroalkyl phosphinic acid affects neurobehavioral development, thyroid disruption, and DNA methylation in developing zebrafish. <i>Science of the Total Environment</i> , 2020 , 736, 139600	10.2	16
2 10	Nutrients and salinity influence Prymnesium parvum (UTEX LB 2797) elicited sublethal toxicity in Pimephales promelas and Danio rerio. <i>Harmful Algae</i> , 2020 , 93, 101795	5.3	2
209	Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. <i>Science of the Total Environment</i> , 2020 , 738, 139807	10.2	14
208	Spatial and seasonal occurrence of semi-volatile organic compounds (SVOCs) in fish influenced by snowmelt and municipal effluent discharge. <i>Science of the Total Environment</i> , 2020 , 737, 140222	10.2	
207	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133	5.6	
206	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498	4.3	
205	Confronting Racism in Chemistry Journals. <i>Organometallics</i> , 2020 , 39, 2331-2333	3.8	
204	One uncertainty factor does not fit all: Identifying mode of action and species specific acute to chronic ratios for aquatic life. <i>Environmental Pollution</i> , 2020 , 262, 114262	9.3	5
203	Multi-approach assessment for the evaluation of spatio-temporal estrogenicity in fish from effluent-dominated surface waters under low instream flow. <i>Environmental Pollution</i> , 2020 , 265, 11512.	2 9.3	4
202	Identifying Needs for Advancing the Profession and Workforce in Environmental Health. <i>American Journal of Public Health</i> , 2020 , 110, 288-294	5.1	8
201	Update to Our Reader, Reviewer, and Author CommunitiesApril 2020. <i>Energy & amp; Fuels</i> , 2020 , 34, 5107-5108	4.1	
200	Pharmaceutical uptake kinetics in rainbow trout: In situ bioaccumulation in an effluent-dominated river influenced by snowmelt. <i>Science of the Total Environment</i> , 2020 , 736, 139603	10.2	7

199	Low dissolved oxygen increases uptake of a model calcium channel blocker and alters its effects on adult Pimephales promelas. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2020 , 231, 108719	3.2	1
198	Psychoactive pharmaceuticals in aquatic systems: A comparative assessment of environmental monitoring approaches for water and fish. <i>Environmental Pollution</i> , 2020 , 261, 114150	9.3	19
197	Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli. <i>Environmental Pollution</i> , 2020 , 262, 114275	9.3	19
196	Suspect and non-target screening of acutely toxic Prymnesium parvum. <i>Science of the Total Environment</i> , 2020 , 715, 136835	10.2	5
195	A closed vitrification system enables a murine ovarian follicle bank for high-throughput ovotoxicity screening, which identifies endocrine disrupting activity of microcystins. <i>Reproductive Toxicology</i> , 2020 , 93, 118-130	3.4	6
194	Balancing chemical function with reduced environmental health hazards: A joint probability approach to examine antimicrobial product efficacy and mammalian toxicity. <i>Journal of Cleaner Production</i> , 2020 , 262, 121323	10.3	1
193	Retrospective Risk Assessment of Chemical Mixtures in the Big Data Era: An Alternative Classification Strategy to Integrate Chemical and Toxicological Data. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 5925-5927	10.3	9
192	Update to Our Reader, Reviewer, and Author CommunitiesApril 2020. Organometallics, 2020, 39, 1665-	16&6	
191	Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200	1.7	
190	Global scanning of anatoxins in aquatic systems: environment and health hazards, and research needs. <i>Marine and Freshwater Research</i> , 2020 , 71, 689	2.2	11
189	Microcystin exposure worsens nonalcoholic fatty liver disease associated ectopic glomerular toxicity via NOX-2-MIR21 axis. <i>Environmental Toxicology and Pharmacology</i> , 2020 , 73, 103281	5.8	4
188	Emerging investigator series: use of behavioural endpoints in the regulation of chemicals. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 49-65	4.3	25
187	CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish. <i>Chemical Research in Toxicology</i> , 2020 , 33, 426	5 ⁴ 435	3
186	Ultrafast laser diode thermal desorption method for analysis of representative pharmaceuticals in soil leachate samples. <i>Talanta</i> , 2020 , 208, 120382	6.2	4
185	Toward Less Hazardous Industrial Compounds: Coupling Quantum Mechanical Computations, Biomarker Responses, and Behavioral Profiles To Identify Bioactivity of S2 Electrophiles in Alternative Vertebrate Models. <i>Chemical Research in Toxicology</i> , 2020 , 33, 367-380	4	5
184	Higher intestinal and circulatory lactate associated NOX2 activation leads to an ectopic fibrotic pathology following microcystin co-exposure in murine fatty liver disease. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2020 , 238, 108854	3.2	2
183	Water reuse and aquaculture: Pharmaceutical bioaccumulation by fish during tertiary treatment in a wastewater stabilization pond. <i>Environmental Pollution</i> , 2020 , 267, 115593	9.3	10
182	Plasma Vitellogenin Reveals Potential Seasonal Estrogenicity in Fish from On-Site Wastewater Treatment Systems in Semi-Arid Streams Influenced by Snowmelt. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2020 , 105, 692-698	2.7	1

(2019-2020)

181	Early microcystin-LR exposure-linked inflammasome activation in mice causes development of fatty liver disease and insulin resistance. <i>Environmental Toxicology and Pharmacology</i> , 2020 , 80, 103457	5.8	7
180	Periphyton, bivalves and fish differentially accumulate select pharmaceuticals in effluent-dependent stream mesocosms. <i>Science of the Total Environment</i> , 2020 , 745, 140882	10.2	5
179	Dynamics of nitrogen-fixing cyanobacteria with heterocysts: a stoichiometric model. <i>Marine and Freshwater Research</i> , 2020 , 71, 644	2.2	7
178	Oxidative stress in the galaxiid fish, Galaxias maculatus, exposed to binary waterborne mixtures of the pro-oxidant cadmium and the anti-oxidant diclofenac. <i>Environmental Pollution</i> , 2019 , 247, 638-646	9.3	19
177	Environmental microcystin targets the microbiome and increases the risk of intestinal inflammatory pathology via NOX2 in underlying murine model of Nonalcoholic Fatty Liver Disease. <i>Scientific Reports</i> , 2019 , 9, 8742	4.9	20
176	Prymnesium parvum differentially triggers sublethal fish antioxidant responses in vitro among salinity and nutrient conditions. <i>Aquatic Toxicology</i> , 2019 , 213, 105214	5.1	7
175	Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. <i>Environmental Pollution</i> , 2019 , 250, 1019-1031	9.3	61
174	Influence of salinity and pH on bioconcentration of ionizable pharmaceuticals by the gulf killifish, Fundulus grandis. <i>Chemosphere</i> , 2019 , 229, 434-442	8.4	19
173	Antidepressants in Surface Waters: Fluoxetine Influences Mosquitofish Anxiety-Related Behavior at Environmentally Relevant Levels. <i>Environmental Science & Environmental & En</i>	10.3	34
172	Corbicula fluminea rapidly accumulate pharmaceuticals from an effluent dependent urban stream. <i>Chemosphere</i> , 2019 , 224, 873-883	8.4	20
171	Greening chemistry and ecotoxicology towards sustainable environmental quality. <i>Green Chemistry</i> , 2019 , 21, 2575-2582	10	15
170	Determination of microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin in water and fish tissue using isotope dilution liquid chromatography tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2019 , 1599, 66-74	4.5	36
169	Comparative mammalian hazards of neonicotinoid insecticides among exposure durations. <i>Environment International</i> , 2019 , 125, 9-24	12.9	23
168	Toward Sustainable Environmental Quality: Priority Research Questions for North America. <i>Environmental Toxicology and Chemistry</i> , 2019 , 38, 1606-1624	3.8	29
167	Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21. <i>American Journal of Physiology - Renal Physiology</i> , 2019 , 317, G40	08 - G42	8 ¹¹
166	Biological Stoichiometry Regulates Toxin Production in (UTEX 2385). <i>Toxins</i> , 2019 , 11,	4.9	23
165	Towards Sustainable Environmental Quality: Priority Research Questions for the Australasian Region of Oceania. <i>Integrated Environmental Assessment and Management</i> , 2019 , 15, 917-935	2.5	11
164	Uncovering Environmental Health: An Initial Assessment of the Profession's Health Department Workforce and Practice. <i>Journal of Environmental Health</i> , 2019 , 81, 24-33	0.4	5

163	Critical review and probabilistic health hazard assessment of cleaning product ingredients in all-purpose cleaners, dish care products, and laundry care products. <i>Environment International</i> , 2019 , 125, 399-417	12.9	16
162	Environmental Health Practice Challenges and Research Needs for U.S. Health Departments. <i>Environmental Health Perspectives</i> , 2019 , 127, 125001	8.4	11
161	Pharmaceuticals, illicit drugs and their metabolites in fish from Argentina: Implications for protected areas influenced by urbanization. <i>Science of the Total Environment</i> , 2019 , 649, 1029-1037	10.2	59
160	Spatial and temporal influence of onsite wastewater treatment systems, centralized effluent discharge, and tides on aquatic hazards of nutrients, indicator bacteria, and pharmaceuticals in a coastal bayou. <i>Science of the Total Environment</i> , 2019 , 650, 354-364	10.2	13
159	Kinetics of Glutathione Depletion and Antioxidant Gene Expression as Indicators of Chemical Modes of Action Assessed in Vitro in Mouse Hepatocytes with Enhanced Glutathione Synthesis. <i>Chemical Research in Toxicology</i> , 2019 , 32, 421-436	4	5
158	Commentary: Perspectives on aquaculture, urbanization and water quality. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2019 , 217, 1-4	3.2	14
157	Identifying household pharmaceutical waste characteristics and population behaviors in one of the most densely populated global cities. <i>Resources, Conservation and Recycling</i> , 2019 , 140, 267-277	11.9	23
156	At the Intersection of Urbanization, Water, and Food Security: Determination of Select Contaminants of Emerging Concern in Mussels and Oysters from Hong Kong. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 5009-5017	5.7	23
155	Spatial, temporal and experimental: Three study design cornerstones for establishing defensible numeric criteria in freshwater ecosystems. <i>Journal of Applied Ecology</i> , 2018 , 55, 2114-2123	5.8	20
154	Identification of novel uncertainty factors and thresholds of toxicological concern for health hazard and risk assessment: Application to cleaning product ingredients. <i>Environment International</i> , 2018 , 113, 357-376	12.9	12
153	Differential uptake of and sensitivity to diphenhydramine in embryonic and larval zebrafish. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1175-1181	3.8	27
152	Cleaning Product Ingredient Safety: What Is the Current State of Availability of Information Regarding Ingredients in Products and Their Function?. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2094-2102	8.3	9
151	Toward sustainable environmental quality: Identifying priority research questions for Latin America. <i>Integrated Environmental Assessment and Management</i> , 2018 , 14, 344-357	2.5	52
150	Urbanization, environment and pharmaceuticals: advancing comparative physiology, pharmacology and toxicology 2018 , 6, cox079		25
149	Global review and analysis of erythromycin in the environment: Occurrence, bioaccumulation and antibiotic resistance hazards. <i>Environmental Pollution</i> , 2018 , 238, 440-451	9.3	77
148	The safer chemical design game. Gamification of green chemistry and safer chemical design concepts for high school and undergraduate students. <i>Green Chemistry Letters and Reviews</i> , 2018 , 11, 103-110	4.7	23
147	Select antibiotics in leachate from closed and active landfills exceed thresholds for antibiotic resistance development. <i>Environment International</i> , 2018 , 115, 89-96	12.9	34
146	Revisiting inland hypoxia: diverse exceedances of dissolved oxygen thresholds for freshwater aquatic life. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 3139-3150	5.1	17

145	The Molecular Design Research Network. <i>Toxicological Sciences</i> , 2018 , 161, 241-248	4.4	13
144	Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay. <i>Environmental Pollution</i> , 2018 , 232, 533-545	9.3	54
143	Alterations of larval photo-dependent swimming responses (PDR): New endpoints for rapid and diagnostic screening of aquatic contamination. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 147, 670-6	680	18
142	Acute exposure to an environmentally relevant concentration of diclofenac elicits oxidative stress in the culturally important galaxiid fish Galaxias maculatus. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 224-235	3.8	21
141	Influence of Diltiazem on Fathead Minnows Across Dissolved Oxygen Gradients. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2835-2850	3.8	6
140	Spatio-temporal bioaccumulation and trophic transfer of ionizable pharmaceuticals in a semi-arid urban river influenced by snowmelt. <i>Journal of Hazardous Materials</i> , 2018 , 359, 231-240	12.8	26
139	Toward sustainable environmental quality: Priority research questions for Europe. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2281-2295	3.8	68
138	Experimental Protocol for Examining Behavioral Response Profiles in Larval Fish: Application to the Neuro-stimulant Caffeine. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	10
137	Sex may influence environmental diphenhydramine accumulation in Round Stingrays. <i>Marine Pollution Bulletin</i> , 2018 , 135, 648-653	6.7	8
136	Global Aquatic Hazard Assessment of Ciprofloxacin: Exceedances of Antibiotic Resistance Development and Ecotoxicological Thresholds. <i>Progress in Molecular Biology and Translational Science</i> , 2018 , 159, 59-77	4	27
135	Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2018 , 285,	4.4	115
134	Ecotoxicological Perspectives on Health Care and the Environment 2018 , 41-67		О
133	Comparative behavioral toxicology with two common larval fish models: Exploring relationships among modes of action and locomotor responses. <i>Science of the Total Environment</i> , 2018 , 640-641, 158	7 - 1600	36
132	Ontogenetic dietary shifts and bioaccumulation of diphenhydramine in Mugil cephalus from an urban estuary. <i>Marine Environmental Research</i> , 2017 , 127, 155-162	3.3	9
131	Global scanning of antihistamines in the environment: Analysis of occurrence and hazards in aquatic systems. <i>Science of the Total Environment</i> , 2017 , 592, 477-487	10.2	64
130	Global scanning assessment of calcium channel blockers in the environment: Review and analysis of occurrence, ecotoxicology and hazards in aquatic systems. <i>Chemosphere</i> , 2017 , 189, 466-478	8.4	34
129	Toward the Design of Less Hazardous Chemicals: Exploring Comparative Oxidative Stress in Two Common Animal Models. <i>Chemical Research in Toxicology</i> , 2017 , 30, 893-904	4	21
128	Population persistence in flowing-water habitats: Conditions where flow-based management of harmful algal blooms works, and where it does not. <i>Ecological Engineering</i> , 2017 , 99, 172-181	3.9	4

127	A chronicle of a killer alga in the west: ecology, assessment, and management of Prymnesium parvum blooms. <i>Hydrobiologia</i> , 2016 , 764, 29-50	2.4	51
126	Consumer-mediated nutrient recycling is influenced by interactions between nutrient enrichment and the antimicrobial agent triclosan. <i>Freshwater Science</i> , 2016 , 35, 856-872	2	5
125	Current Status and Future Challenges in Molecular Design for Reduced Hazard. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 5900-5906	8.3	32
124	Bioaccumulation of human pharmaceuticals in fish across habitats of a tidally influenced urban bayou. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 966-74	3.8	51
123	Predicted and observed therapeutic dose exceedances of ionizable pharmaceuticals in fish plasma from urban coastal systems. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 983-95	3.8	35
122	Age matters: Developmental stage of Danio rerio larvae influences photomotor response thresholds to diazinion or diphenhydramine. <i>Aquatic Toxicology</i> , 2016 , 170, 344-354	5.1	42
121	Exploring Educators Environmental Education Attitudes and Efficacy: Insights Gleaned from a Texas Wetland Academy. <i>International Journal of Science Education, Part B: Communication and Public Engagement</i> , 2016 , 6, 303-324	1.2	1
120	Changing tides: Adaptive monitoring, assessment, and management of pharmaceutical hazards in the environment through time. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1037-42	3.8	11
119	Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 6-13	3.8	239
118	Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 660-75	3.8	22
117	Effects of sertraline on behavioral indices of crayfish Orconectes virilis. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 134P1, 31-37	7	18
116	Harmful Algal Blooms 2015 , 873-920		30
115	Comparative endpoint sensitivity of in vitro estrogen agonist assays. <i>Regulatory Toxicology and Pharmacology</i> , 2015 , 72, 185-93	3.4	20
114	Street dust: implications for stormwater and air quality, and environmental through street sweeping. <i>Reviews of Environmental Contamination and Toxicology</i> , 2015 , 233, 71-128	3.5	10
113	Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. <i>Dose-Response</i> , 2015 , 13, 1559325815598308	2.3	333
112	Determination of nicotine and its metabolites accumulated in fish tissue using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. <i>Journal of Separation Science</i> , 2015 , 38, 2414-22	3.4	8
111	Observed and modeled effects of pH on bioconcentration of diphenhydramine, a weakly basic pharmaceutical, in fathead minnows. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1425-35	3.8	73
110	Prymnesium parvum invasion success into coastal bays of the Gulf of Mexico: Galveston Bay case study. <i>Harmful Algae</i> , 2015 , 43, 31-45	5.3	3

(2014-2015)

A multibiomarker approach to explore interactive effects of propranolol and fluoxetine in marine mussels. <i>Environmental Pollution</i> , 2015 , 205, 60-9	9.3	38	
Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought. <i>Chemosphere</i> , 2015 , 119, 927-934	8.4	69	
Comparative pharmacology and toxicology of pharmaceuticals in the environment: diphenhydramine protection of diazinon toxicity in Danio rerio but not Daphnia magna. <i>AAPS Journal</i> , 2015 , 17, 175-83	3.7	20	
Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): Predictive model and empirical data. <i>Integrated Environmental Assessment and Management</i> , 2015 , 11, 118-29	2.5	40	
Rotifer-Prymnesium parvum interactions: role of lake bloom history on rotifer adaptation to toxins produced by P. parvum. <i>Aquatic Microbial Ecology</i> , 2015 , 75, 55-68	1.1	1	
Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments. <i>Aquatic Toxicology</i> , 2014 , 151, 105-13	5.1	43	
Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent. <i>Science of the Total Environment</i> , 2014 , 466-467, 976-84	10.2	162	
Assessment of mosquitofish (Gambusia affinis) health indicators in relation to domestic wastewater discharges in suburbs of Houston, USA. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2014 , 93, 13-8	2.7	6	
An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research. <i>Chemosphere</i> , 2014 , 115, 4-12	8.4	59	
Fish on Prozac (and Zoloft): ten years later. <i>Aquatic Toxicology</i> , 2014 , 151, 61-7	5.1	119	
An exploratory investigation of various modes of action and potential adverse outcomes of fluoxetine in marine mussels. <i>Aquatic Toxicology</i> , 2014 , 151, 14-26	5.1	91	
Chronic fluoxetine exposure alters movement and burrowing in adult freshwater mussels. <i>Aquatic Toxicology</i> , 2014 , 151, 27-35	5.1	50	
Assessing the Improvement of Stormwater Quality Through Street Cleaning. <i>Proceedings of the Water Environment Federation</i> , 2014 , 2014, 92-105			
International scientists' priorities for research on pharmaceutical and personal care products in the environment. <i>Integrated Environmental Assessment and Management</i> , 2014 , 10, 576-87	2.5	76	
Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369,	5.8	95	
Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1894-902	3.8	18	
The role of toxicological science in meeting the challenges and opportunities of hydraulic fracturing. <i>Toxicological Sciences</i> , 2014 , 139, 271-83	4.4	35	
	Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought. <i>Chemosphere</i> , 2015, 119, 927-934 Comparative pharmacology and toxicology of pharmaceuticals in the environment: diphenhydramine protection of diazinon toxicity in Danio rerio but not Daphnia magna. <i>AAPS Journal</i> , 2015, 17, 175-83 Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): Predictive model and empirical data. <i>Integrated Environmental Assessment and Management</i> , 2015, 11, 118-29 Rotifer-Prymnesium parvum interactions: role of lake bloom history on rotifer adaptation to toxins produced by P. parvum. <i>Aquatic Microbial Ecology</i> , 2015, 75, 55-68 Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments. <i>Aquatic Toxicology</i> , 2014, 151, 105-13 Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent. <i>Science of the Total Environment</i> , 2014, 466-467, 976-84 Assessment of mosquitofish (Gambusia affinis) health indicators in relation to domestic wastewater discharges in suburbs of Houston, USA. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2014, 93, 13-8 An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research. <i>Chemosphere</i> , 2014, 151, 61-7 An exploratory investigation of various modes of action and potential adverse outcomes of fluoxetine in marine mussels. <i>Aquatic Toxicology</i> , 2014, 151, 27-35 Assessing the Improvement of Stormwater Quality Through Street Cleaning. <i>Proceedings of the Water Environment Federation</i> , 2014, 2014, 92-105 International scientists' priorities for research on pharmaceutical and personal care products in the environment. <i>Integrated Environmental Assessment and Management</i> , 2014, 10, 576-87 Bioaccumulation and trophic d	Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought. Chemosphere, 2015, 119, 927-934 Comparative pharmacology and toxicology of pharmaceuticals in the environment: diphenhydramine protection of diazinon toxicity in Danio rerio but not Daphnia magna. AAPS Journal, 2015, 17, 175-83 Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): Predictive model and empirical data. Integrated Environmental Assessment and Management, 2015, 11, 118-29 Rotifer-Prymnesium parvum interactions: role of lake bloom history on rotifer adaptation to toxins produced by P. parvum. Aquatic Microbial Ecology, 2015, 75, 55-68 Similar anxiolytic effects of agonists targeting serotonin 5-HTIA or cannabinoid CB receptors on zebrafish behavior in novel environments. Aquatic Toxicology, 2014, 151, 105-13 Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent. Science of the Total Environment, 2014, 465-467, 976-84 Assessment of mosquitofish (Gambusia affinis) health indicators in relation to domestic wastewater discharges in suburbs of Houston, USA. Bulletin of Environmental Contamination and Toxicology, 2014, 93, 1-38 An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research. Chemosphere, 2014, 115, 4-12 Fish on Prozac (and Zoloft): ten years later. Aquatic Toxicology, 2014, 151, 61-7 An exploratory investigation of various modes of action and potential adverse outcomes of fluoxetine in marine mussels. Aquatic Toxicology, 2014, 151, 72-35 Assessing the Improvement of Stormwater Quality Through Street Cleaning. Proceedings of the Water Environment Federation, 2014, 2014, 92-105 Bioaccumulation and trophic dilution of human pharmaceutical and personal care products in the environment. Integrated Environmental Assessment and Manag	Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought. Chemosphere, 2015, 119, 927-934 Comparative pharmacology and toxicology of pharmaceuticals in the environment: diphenhydramine protection of diazinon toxicity in Danio rerio but not Daphnia magna. AAPS Journal, 2015, 17, 175-93 Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): Predictive model and empirical data. Integrated Environmental Assessment and Management, 2015, 11, 118-29 Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): Predictive model and empirical data. Integrated Environmental Assessment and Management, 2015, 11, 118-29 Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): Predictive model and empirical data. Integrated Environmental Assessment and Management, 2015, 11, 118-29 Exposure and food web transfer of pharmaceuticals bound history on rotifer adaptation to toxins produced by P. parvum. Aquatic Microbial Ecology, 2015, 75, 55-68 Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments. Aquatic Toxicology, 2014, 151, 105-13 43 Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent. Science of the Total Environment, 2014, 466-467, 976-84 Assessment of mosquitofish (Cambusia affinis) health indicators in relation to domestic wastewater discharges in suburbs of Houston, USA. Bulletin of Environmental Contamination and Toxicology, 2014, 93, 13-8 An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research. Chemosphere, 2014, 115, 4-12 Fish on Prozac (and Zoloft): ten years later. Aquatic Toxicology, 2014, 151, 17-42 An exploratory investigation of various modes of action and potential adv

91	Selective pressurized liquid extraction technique capable of analyzing dioxins, furans, and PCBs in clams and crab tissue. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2014 , 92, 460-5	2.7	6
90	Comparative pharmaceutical metabolism by rainbow trout (Oncorhynchus mykiss) liver S9 fractions. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1810-8	3.8	82
89	Interplay between ambient surface water mixing and manipulated hydraulic flushing: Implications for harmful algal bloom mitigation. <i>Ecological Engineering</i> , 2013 , 60, 289-298	3.9	19
88	Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems. <i>Chemosphere</i> , 2013 , 92, 38-44	8.4	34
87	Ammonium treatments to suppress toxic blooms of Prymnesium parvum in a subtropical lake of semi-arid climate: results from in situ mesocosm experiments. <i>Water Research</i> , 2013 , 47, 4274-85	12.5	9
86	Nutrient stoichiometry and concentrations influence silver toxicity in the aquatic macrophyte Lemna gibba. <i>Science of the Total Environment</i> , 2013 , 449, 229-36	10.2	10
85	Sublethal silver and NaCl toxicity in Daphnia magna: a comparative study of standardized chronic endpoints and progeny phototaxis. <i>Ecotoxicology</i> , 2013 , 22, 693-706	2.9	10
84	Enantiomer-specific in vitro biotransformation of select pharmaceuticals in rainbow trout (Oncorhynchus mykiss). <i>Chirality</i> , 2013 , 25, 763-7	2.1	18
83	STIMULATING EFFECT OF ANABAENA SP. (CYANOBACTERIA) EXUDATE ON PRYMNESIUM PARVUM (HAPTOPHYTA)(1). <i>Journal of Phycology</i> , 2012 , 48, 1045-9	3	4
82	Suggesting a testing strategy for possible endocrine effects of drug metabolites. <i>Regulatory Toxicology and Pharmacology</i> , 2012 , 62, 441-8	3.4	4
81	Carbon sink to source: longitudinal gradients of planktonic P:R ratios in subtropical reservoirs. <i>Biogeochemistry</i> , 2012 , 107, 81-93	3.8	5
80	Modeling of plankton community dynamics characterized by algal toxicity and allelopathy: A focus on historical Prymnesium parvum blooms in a Texas reservoir. <i>Ecological Modelling</i> , 2012 , 227, 147-161	3	21
79	Occurrence of pharmaceuticals and personal care products in German fish tissue: a national study. <i>Environmental Science & Environmental Science & Env</i>	10.3	100
78	Human therapeutic plasma levels of the selective serotonin reuptake inhibitor (SSRI) sertraline decrease serotonin reuptake transporter binding and shelter-seeking behavior in adult male fathead minnows. <i>Environmental Science & Environmental Science & 2012</i> , 2012, 46, 2427-35	10.3	143
77	Evaluation of an isotope dilution liquid chromatography tandem mass spectrometry method for pharmaceuticals in fish. <i>Journal of Chromatography A</i> , 2012 , 1253, 177-83	4.5	80
76	Human pharmaceuticals in the aquatic environment: a review of recent toxicological studies and considerations for toxicity testing. <i>Reviews of Environmental Contamination and Toxicology</i> , 2012 , 218, 1-99	3.5	92
75	Anticipated human population and climate change effects on algal blooms of a toxic haptophyte in the south-central USA1This article is derived from a special session entitled AlNew Hydrology: Inflow Effects on Ecosystem Form and Functioning Lihat took place at the February 2011 ASLO	2.4	26
74	Aquatic Sciences conference in Sanituan, Puerto Rico <i>Canadian Journal of Fisheries and Aquatic</i> Beyond hydraulic flushing: Deep water mixing takes the harm out of a haptophyte algal bloom. Harmful Algae, 2012 , 20, 42-57	5.3	13

73	Low pH preempts bloom development of a toxic haptophyte. Harmful Algae, 2012, 20, 156-164	5.3	23
72	Human Health Risk Assessment for Pharmaceuticals in the Environment: Existing Practice, Uncertainty, and Future Directions. <i>Emerging Topics in Ecotoxicology</i> , 2012 , 167-224		6
71	Perspectives on Human Pharmaceuticals in the Environment. <i>Emerging Topics in Ecotoxicology</i> , 2012 , 1-16		6
70	Considerations and Criteria for the Incorporation of Mechanistic Sublethal Endpoints into Environmental Risk Assessment for Biologically Active Compounds. <i>Emerging Topics in Ecotoxicology</i> , 2012 , 139-165		2
69	Towards rational molecular design for reduced chronic aquatic toxicity. <i>Green Chemistry</i> , 2012 , 14, 1001	l 10	42
68	Pharmaceuticals and personal care products in the environment: what are the big questions?. <i>Environmental Health Perspectives</i> , 2012 , 120, 1221-9	8.4	830
67	Pharmaceuticals in the environment: lessons learned for reducing uncertainties in environmental risk assessment. <i>Progress in Molecular Biology and Translational Science</i> , 2012 , 112, 231-58	4	10
66	Probabilistic ecological hazard assessment of microcystin-LR allelopathy to Prymnesium parvum. <i>Journal of Plankton Research</i> , 2011 , 33, 319-332	2.2	22
65	An initial probabilistic hazard assessment of oil dispersants approved by the United States National Contingency Plan. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1704-8	3.8	23
64	PBDE developmental effects on embryonic zebrafish. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1865-72	3.8	88
63	Application of chemical toxicity distributions to ecotoxicology data requirements under REACH. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1943-54	3.8	29
62	Effects of the antihistamine diphenhydramine on selected aquatic organisms. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2065-72	3.8	96
61	Prymnesium parvum: an emerging threat to inland waters. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1955-64	3.8	40
60	Influence of drought and total phosphorus on diel pH in wadeable streams: implications for ecological risk assessment of ionizable contaminants. <i>Integrated Environmental Assessment and Management</i> , 2011 , 7, 636-47	2.5	30
59	The challenges posed by radiation and radionuclide releases to the environment. <i>Integrated Environmental Assessment and Management</i> , 2011 , 7, 360-1	2.5	
58	Fate of sucralose through environmental and water treatment processes and impact on plant indicator species. <i>Environmental Science & Environmental & Environm</i>	10.3	133
57	Towards rational molecular design: derivation of property guidelines for reduced acute aquatic toxicity. <i>Green Chemistry</i> , 2011 , 13, 2373	10	53
56	A decade of fish-killing Prymnesium parvum blooms in Texas: roles of inflow and salinity. <i>Journal of Plankton Research</i> , 2011 , 33, 243-253	2.2	76

55	Sunlight amelioration of Prymnesium parvum acute toxicity to fish. <i>Journal of Plankton Research</i> , 2011 , 33, 265-272	2.2	26
54	Prymnesium parvum bloom termination: role of hydraulic dilution. <i>Journal of Plankton Research</i> , 2011 , 33, 309-317	2.2	20
53	Spatial variation of harmful algae and their toxins in flowing-water habitats: a theoretical exploration. <i>Journal of Plankton Research</i> , 2011 , 33, 211-227	2.2	43
52	Hemolysis, Fish Mortality, and LC-ESI-MS of Cultured Crude and Fractionated Golden Alga (Prymnesium parvum)1. <i>Journal of the American Water Resources Association</i> , 2010 , 46, 33-44	2.1	23
51	Comparative Toxicity of Prymnesium parvum in Inland Waters1. <i>Journal of the American Water Resources Association</i> , 2010 , 46, 45-62	2.1	39
50	Prymnesium parvum Population Dynamics During Bloom Development: A Role Assessment of Grazers and Virus1. <i>Journal of the American Water Resources Association</i> , 2010 , 46, 63-75	2.1	28
49	Factors Influencing Prymnesium parvum Population Dynamics During Bloom Initiation: Results from In-lake Mesocosm Experiments1. <i>Journal of the American Water Resources Association</i> , 2010 , 46, 76-91	2.1	27
48	Current Status of Mathematical Models for Population Dynamics of Prymnesium parvum in a Texas Reservoir1. <i>Journal of the American Water Resources Association</i> , 2010 , 46, 92-107	2.1	27
47	Conservation Physiology of the Plethodontid Salamanders Eurycea nana and E. sosorum: Response to Declining Dissolved Oxygen. <i>Copeia</i> , 2010 , 2010, 540-553	1.1	10
46	A mechanistic explanation for pH-dependent ambient aquatic toxicity of Prymnesium parvum carter. <i>Toxicon</i> , 2010 , 55, 990-8	2.8	44
45	Influence of pH on amine toxicology and implications for harmful algal bloom ecology. <i>Toxicon</i> , 2010 , 55, 1038-1043	2.8	14
44	Leveraging mammalian pharmaceutical toxicology and pharmacology data to predict chronic fish responses to pharmaceuticals. <i>Toxicology Letters</i> , 2010 , 193, 69-78	4.4	99
43	Hydraulic flushing as a Prymnesium parvum bloom-terminating mechanism in a subtropical lake. <i>Harmful Algae</i> , 2010 , 9, 323-332	5.3	44
42	Risk assessment considerations for veterinary medicines in aquatic ecosystems. <i>ACS Symposium Series</i> , 2010 , 205-223	0.4	4
41	Targets, Effects and Risks in Aquatic Plants Exposed to Veterinary Antibiotics. <i>ACS Symposium Series</i> , 2010 , 169-189	0.4	7
40	Exploring Lemna gibba thresholds to nutrient and chemical stressors: differential effects of triclosan on internal stoichiometry and nitrate uptake across a nitrogen:phosphorus gradient. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2363-70	3.8	9
39	Hemolytic toxicity and nutritional status of Prymnesium parvum during population growth. <i>Aquatic Microbial Ecology</i> , 2010 , 61, 141-148	1.1	7
38	RiverEeservoir transition zones are nitrogen fixation hot spots regardless of ecosystem trophic state. <i>Hydrobiologia</i> , 2009 , 625, 61-68	2.4	32

(2007-2009)

37	das chromatography-mass spectrometry screening methods for select UV filters, synthetic musks, alkylphenols, an antimicrobial agent, and an insect repellent in fish. <i>Journal of Chromatography A</i> , 2009 , 1216, 815-23	4.5	113
36	Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2744-53	3.8	116
35	Influence of nitrogen and phosphorus concentrations and ratios on Lemna gibba growth responses to triclosan in laboratory and stream mesocosm experiments. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2610-21	3.8	26
34	Aquatic toxicity of sertraline to Pimephales promelas at environmentally relevant surface water pH. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2685-94	3.8	113
33	Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2587-97	3.8	361
32	Perspectives on ecological risk assessment of chiral compounds. <i>Integrated Environmental Assessment and Management</i> , 2009 , 5, 364-73	2.5	35
31	Growth at the edge of the niche: An experimental study of the harmful alga Prymnesium parvum. Limnology and Oceanography, 2009 , 54, 1679-1687	4.8	56
30	Aquatic plants exposed to pharmaceuticals: effects and risks. <i>Reviews of Environmental Contamination and Toxicology</i> , 2008 , 192, 67-115	3.5	89
29	Herbicidal effects of sulfamethoxazole in Lemna gibba: using p-aminobenzoic acid as a biomarker of effect. <i>Environmental Science & Environmental Scie</i>	10.3	77
28	Effects of Pharmaceuticals and Personal Care Products in the Environment: Current and Future Perspectives. <i>Proceedings of the Water Environment Federation</i> , 2008 , 2008, 6406-6409		
27	Physical Factors Control Phytoplankton Production and Nitrogen Fixation in Eight Texas Reservoirs. <i>Ecosystems</i> , 2008 , 11, 1181-1197	3.9	24
26	Comparison of the sensitivities of common in vitro and in vivo assays of estrogenic activity: application of chemical toxicity distributions. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 2608-16	53.8	31
25	Environmental Risk Assessment and Management of Veterinary Medicines 2008, 21-55		1
24	Assessing the Aquatic Hazards of Veterinary Medicines 2008 , 97-128		1
23	Effect of imbalanced nutrients and immigration on Prymnesium parvum community dominance and toxicity: results from in-lake microcosm experiments. <i>Aquatic Microbial Ecology</i> , 2008 , 52, 33-44	1.1	35
22	Analysis of pharmaceuticals in fish using liquid chromatography-tandem mass spectrometry. <i>Analytical Chemistry</i> , 2007 , 79, 3155-63	7.8	222
21	GROWTH AND TOXICITY OF PRYMNESIUM PARVUM (HAPTOPHYTA) AS A FUNCTION OF SALINITY, LIGHT, AND TEMPERATURE1. <i>Journal of Phycology</i> , 2007 , 43, 219-227	3	85
20	[(3)H] citalopram binding to serotonin transporter sites in minnow brains. <i>Basic and Clinical Pharmacology and Toxicology</i> , 2007 , 101, 203-10	3.1	37

19	Laboratory tests of ammonium and barley straw extract as agents to suppress abundance of the harmful alga Prymnesium parvum and its toxicity to fish. <i>Water Research</i> , 2007 , 41, 2503-12	12.5	32
18	Daphnia magna responses to a vertebrate estrogen receptor agonist and an antagonist: a multigenerational study. <i>Ecotoxicology and Environmental Safety</i> , 2007 , 67, 385-98	7	62
17	Enantiospecific sublethal effects of the antidepressant fluoxetine to a model aquatic vertebrate and invertebrate. <i>Chemosphere</i> , 2007 , 69, 9-16	8.4	189
16	Repeating history: pharmaceuticals in the environment. <i>Environmental Science & Environmental Science </i>	10.3	290
15	Physiological and reproductive effects of beta adrenergic receptor antagonists in Daphnia magna. <i>Archives of Environmental Contamination and Toxicology</i> , 2006 , 50, 503-10	3.2	95
14	Enantiospecific toxicity of the beta-blocker propranolol to Daphnia magna and Pimephales promelas. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 1780-6	3.8	113
13	Water Quality of Effluent-dominated Ecosystems: Ecotoxicological, Hydrological, and Management Considerations. <i>Hydrobiologia</i> , 2006 , 556, 365-379	2.4	240
12	A comparison of chronic cadmium effects on Hyalella azteca in effluent-dominated stream mesocosms to similar laboratory exposures in effluent and reconstituted hard water. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 902-8	3.8	16
11	Determination of select antidepressants in fish from an effluent-dominated stream. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 464-9	3.8	451
10	Laboratory and field responses to cadmium: an experimental study in effluent-dominated stream mesocosms. <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 1057-64	3.8	25
9	Reproductive assessment of Japanese medaka (Oryzias latipes) following a four-week fluoxetine (SSRI) exposure. <i>Archives of Environmental Contamination and Toxicology</i> , 2004 , 46, 511-7	3.2	124
8	Linkages between population demographics and municipal effluent estrogenicity. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2003 , 71, 504-11	2.7	6
7	Aquatic ecotoxicology of fluoxetine. <i>Toxicology Letters</i> , 2003 , 142, 169-83	4.4	342
6	Waterborne and sediment toxicity of fluoxetine to select organisms. <i>Chemosphere</i> , 2003 , 52, 135-42	8.4	180
5	Comparison of in vitro and in vivo bioassays for estrogenicity in effluent from North American municipal wastewater facilities. <i>Toxicological Sciences</i> , 2003 , 72, 77-83	4.4	69
4	Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms. <i>Archives of Environmental Contamination and Toxicology</i> , 2002 , 43, 229-35	3.2	286
3	Assessment of toxicity reduction in wastewater effluent flowing through a treatment wetland using Pimephales promelas, Ceriodaphnia dubia, and Vibrio fischeri. <i>Archives of Environmental Contamination and Toxicology</i> , 2002 , 42, 9-16	3.2	22
2	Response of Ceriodaphnia dubia to ionic silver: discrepancies among model predictions, measured concentrations and mortality. <i>Chemosphere</i> , 2002 , 46, 1141-6	8.4	23

The effects of salinity and NIIP on N-rich toxins by both an N-fixing and non-N-fixing cyanobacteria.

Limnology and Oceanography Letters,

7.9 0