Frederick J Livesey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/539980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Reports, 2021, 35, 109259.	6.4	47
2	Endolysosome and autophagy dysfunction in Alzheimer disease. Autophagy, 2021, 17, 3882-3883.	9.1	14
3	Tumour necrosis factor induces increased production of extracellular amyloid-β- and α-synuclein-containing aggregates by human Alzheimer's disease neurons. Brain Communications, 2020, 2, fcaa146.	3.3	14
4	Variable Outcomes in Neural Differentiation of Human PSCs Arise from Intrinsic Differences in Developmental Signaling Pathways. Cell Reports, 2020, 31, 107732.	6.4	48
5	Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22754-22763.	7.1	27
6	Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Reports, 2019, 26, 582-593.e5.	6.4	119
7	Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia. Stem Cell Reports, 2018, 10, 1294-1307.	4.8	124
8	Extracellular Monomeric and Aggregated Tau Efficiently Enter Human Neurons through Overlapping but Distinct Pathways. Cell Reports, 2018, 22, 3612-3624.	6.4	147
9	Altered γ-Secretase Processing of APP Disrupts Lysosome and Autophagosome Function in Monogenic Alzheimer's Disease. Cell Reports, 2018, 25, 3647-3660.e2.	6.4	95
10	Reproducibility of Molecular Phenotypes after Long-Term Differentiation toÂHuman iPSC-Derived Neurons: A Multi-Site Omics Study. Stem Cell Reports, 2018, 11, 897-911.	4.8	135
11	In vivo modeling of human neuron dynamics and Down syndrome. Science, 2018, 362, .	12.6	87
12	Extracellular Forms of Aβ and Tau from iPSC Models of Alzheimer's Disease Disrupt Synaptic Plasticity. Cell Reports, 2018, 23, 1932-1938.	6.4	60
13	Chromatin Accessibility Impacts Transcriptional Reprogramming in Oocytes. Cell Reports, 2018, 24, 304-311.	6.4	50
14	Guided self-organization and cortical plate formation in human brain organoids. Nature Biotechnology, 2017, 35, 659-666.	17.5	606
15	Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer's Disease. Stem Cell Reports, 2017, 8, 870-882.	4.8	53
16	Filopodyan: An open-source pipeline for the analysis of filopodia. Journal of Cell Biology, 2017, 216, 3405-3422.	5.2	46
17	2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size. Cell Stem Cell, 2016, 18, 467-480.	11.1	292
18	Automated Synthesis and Analysis of Switching Gene Regulatory Networks. BioSystems, 2016, 146, 26-34.	2.0	16

FREDERICK J LIVESEY

#	Article	IF	CITATIONS
19	Cortical Differentiation of Human Pluripotent Cells for In Vitro Modeling of Alzheimer's Disease. Methods in Molecular Biology, 2016, 1303, 267-278.	0.9	6
20	Neural Cell Fate Determination. , 2015, , 283-296.		3
21	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	4.8	72
22	Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Human Molecular Genetics, 2015, 24, 5260-5269.	2.9	116
23	G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nature Methods, 2015, 12, 519-522.	19.0	633
24	APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons. Cell Reports, 2015, 11, 689-696.	6.4	158
25	The methyl binding domain 3/nucleosome remodelling and deacetylase complex regulates neural cell fate determination and terminal differentiation in the cerebral cortex. Neural Development, 2015, 10, 13.	2.4	53
26	Development and function of human cerebral cortex neural networks from pluripotent stem cells <i>in vitro</i> . Development (Cambridge), 2015, 142, 3178-3187.	2.5	103
27	Reconstructing the neuronal milieu intérieur. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6250-6251.	7.1	3
28	ÎSecretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 2015, 526, 443-447.	27.8	308
29	The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation <i>iin vivo</i> and <i>in vitro</i> . Development (Cambridge), 2014, 141, 2216-2224.	2.5	76
30	Human stem cell models of dementia. Human Molecular Genetics, 2014, 23, R35-R39.	2.9	23
31	Imatinib treatment and $\hat{A^2}$ 42 in humans. Alzheimer's and Dementia, 2014, 10, S374-80.	0.8	15
32	Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Development, 2013, 8, 14.	2.4	42
33	Pax6 Exerts Regional Control of Cortical Progenitor Proliferation via Direct Repression of Cdk6 and Hypophosphorylation of pRb. Neuron, 2013, 78, 269-284.	8.1	82
34	Chromatin Regulation by BAF170 Controls Cerebral Cortical Size and Thickness. Developmental Cell, 2013, 25, 256-269.	7.0	149
35	Ikaros promotes early-born neuronal fates in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E716-25.	7.1	99
36	Stem cell models of Alzheimer's disease and related neurological disorders. Alzheimer's Research and Therapy, 2012, 4, 44.	6.2	5

FREDERICK J LIVESEY

#	Article	IF	CITATIONS
37	Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 2012, 7, 1836-1846.	12.0	781
38	Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nature Neuroscience, 2012, 15, 477-486.	14.8	726
39	A potential link between obesity and neural stem cell dysfunction. Nature Cell Biology, 2012, 14, 987-989.	10.3	6
40	A Human Stem Cell Model of Early Alzheimer's Disease Pathology in Down Syndrome. Science Translational Medicine, 2012, 4, 124ra29.	12.4	276
41	Neural Stem Cell Biology in Vertebrates and Invertebrates: More Alike than Different?. Neuron, 2011, 70, 719-729.	8.1	106
42	Grouping and classifying electrophysiologically-defined classes of neocortical neurons by single cell, whole-genome expression profiling. Frontiers in Molecular Neuroscience, 2010, 3, 10.	2.9	36
43	Reversible Block of Mouse Neural Stem Cell Differentiation in the Absence of Dicer and MicroRNAs. PLoS ONE, 2010, 5, e13453.	2.5	65
44	Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15957-15962.	7.1	396
45	The Level of the Transcription Factor Pax6 Is Essential for Controlling the Balance between Neural Stem Cell Self-Renewal and Neurogenesis. PLoS Genetics, 2009, 5, e1000511.	3.5	347
46	Gradients in the Brain: The Control of the Development of Form and Function in the Cerebral Cortex. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002519-a002519.	5.5	125
47	Prolonged illumination upâ€regulates arrestin and two guanylate cyclase activating proteins: a novel mechanism for light adaptation. Journal of Physiology, 2009, 587, 2457-2472.	2.9	5
48	Modelling and measuring single cell RNA expression levels find considerable transcriptional differences among phenotypically identical cells. BMC Genomics, 2008, 9, 268.	2.8	34
49	PMC42, a breast progenitor cancer cell line, has normal-like mRNA and microRNA transcriptomes. Breast Cancer Research, 2008, 10, R54.	5.0	22
50	Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single-cell level. Genome Biology, 2006, 7, R18.	9.6	57
51	A role for Dicer in immune regulation. Journal of Experimental Medicine, 2006, 203, 2519-2527.	8.5	490
52	A role for the transcriptional repressor REST in maintaining the phenotype of neurosecretory-deficient PC12 cells. Journal of Neurochemistry, 2006, 99, 1435-1444.	3.9	26
53	Electrophysiological and gene expression profiling of neuronal cell types in mammalian neocortex. Journal of Physiology, 2006, 575, 361-365.	2.9	6
54	A role for Dicer in immune regulation. Journal of Cell Biology, 2006, 175, i7-i7.	5.2	0

FREDERICK J LIVESEY

#	Article	IF	CITATIONS
55	Cell differentiation. Current Opinion in Cell Biology, 2005, 17, 637-638.	5.4	0
56	Genomic characterisation of a Fgf-regulated gradient-based neocortical protomap. Development (Cambridge), 2005, 132, 3947-3961.	2.5	71
57	A Dynamic Switch in the Replication Timing of Key Regulator Genes in Embryonic Stem Cells upon Neural Induction. Cell Cycle, 2004, 3, 1619-1624.	2.6	77
58	An analysis of the gene expression program of mammalian neural progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1374-1379.	7.1	81
59	Molecular Organization of the Ferret Visual Thalamus. Journal of Neuroscience, 2004, 24, 9962-9970.	3.6	81
60	FLRT3 is expressed in sensory neurons after peripheral nerve injury and regulates neurite outgrowth. Molecular and Cellular Neurosciences, 2004, 27, 202-214.	2.2	47
61	Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nature Genetics, 2003, 34, 53-58.	21.4	364
62	Strategies for microarray analysis of limiting amounts of RNA. Briefings in Functional Genomics & Proteomics, 2003, 2, 31-36.	3.8	55
63	Vertebrate neural cell-fate determination: Lessons from the retina. Nature Reviews Neuroscience, 2001, 2, 109-118.	10.2	859
64	Differential Display of m RNA by PCR. Current Protocols in Human Genetics, 2001, 30, Unit 11.5.	3.5	0
65	Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Current Biology, 2000, 10, 301-310.	3.9	252
66	Netrins and netrin receptors. Cellular and Molecular Life Sciences, 1999, 56, 62-68.	5.4	70
67	Differential Display Cloning of Genes Induced in Regenerating Neurons. Methods, 1998, 16, 386-395.	3.8	3
68	Netrin and Netrin Receptor Expression in the Embryonic Mammalian Nervous System Suggests Roles in Retinal, Striatal, Nigral, and Cerebellar Development. Molecular and Cellular Neurosciences, 1997, 8, 417-429.	2.2	169
69	A Schwann cell mitogen accompanying regeneration of motor neurons. Nature, 1997, 390, 614-618.	27.8	173
70	Identifying changes in gene expression in the nervous system: mRNA differential display. Trends in Neurosciences, 1996, 19, 84-88.	8.6	47