
Gurutze Arzamendi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5399762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reaction Monitoring by Ultrasounds in a Pseudohomogeneous Medium: Triglyceride Ethanolysis for Biodiesel Production. Processes, 2022, 10, 12.	2.8	1
2	Pseudo-Homogeneous and Heterogeneous Kinetic Models of the NaOH-Catalyzed Methanolysis Reaction for Biodiesel Production. Energies, 2021, 14, 4192.	3.1	2
3	Comprehensive Kinetics of Hydrolysis of Organotriethoxysilanes by ²⁹ Si NMR. Journal of Physical Chemistry A, 2019, 123, 10364-10371.	2.5	5
4	Kinetics of the acid-catalyzed hydrolysis of tetraethoxysilane (TEOS) by 29Si NMR spectroscopy and mathematical modeling. Journal of Sol-Gel Science and Technology, 2018, 86, 316-328.	2.4	28
5	Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel, 2018, 211, 173-181.	6.4	89
6	Effect of the thermal conductivity of metallic monoliths on methanol steam reforming. Catalysis Today, 2016, 273, 131-139.	4.4	55
7	Entropy of chemical processes versus numerical representability of orderings. Journal of Mathematical Chemistry, 2016, 54, 503-526.	1.5	4
8	Issues concerning the use of renewable Ca-based solids as transesterification catalysts. Fuel, 2015, 158, 558-564.	6.4	18
9	Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Processing Technology, 2015, 129, 147-155.	7.2	118
10	Ecodesign of PVC packing tape using life cycle assessment. International Journal of Life Cycle Assessment, 2014, 19, 218-230.	4.7	15
11	Influence of vegetable oil fatty acid composition on ultrasound-assisted synthesis of biodiesel. Fuel, 2014, 125, 183-191.	6.4	35
12	Monitoring of the methanolysis reaction for biodiesel production by off-line and on-line refractive index and speed of sound measurements. Fuel, 2014, 121, 157-164.	6.4	19
13	Gold supported on CuOx/CeO2 catalyst for the purification of hydrogen by the CO preferential oxidation reaction (PROX). Fuel, 2014, 118, 176-185.	6.4	46
14	Heterogenization of the biodiesel synthesis catalysis: CaO and novel calcium compounds as transesterification catalysts. Chemical Engineering Research and Design, 2014, 92, 1519-1530.	5.6	96
15	CFD analysis of the effects of the flow distribution and heat losses on the steam reforming of methanol in catalytic (Pd/ZnO) microreactors. Chemical Engineering Journal, 2014, 238, 37-44.	12.7	39
16	Development of eggshell derived catalyst for transesterification of used cooking oil for biodiesel production. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 742-748.	1.5	39
17	Structured catalysts based on Mg–Al hydrotalcite for the synthesis of biodiesel. Catalysis Today, 2013, 216, 211-219.	4.4	48
18	Preferential oxidation of CO over Au/CuOx–CeO2 catalyst in microstructured reactors studied through CFD simulations. Catalysis Today, 2013, 216, 283-291.	4.4	15

#	Article	IF	CITATIONS
19	Influence of the O2/CO ratio and the presence of H2O and CO2 in the feed-stream during the preferential oxidation of CO (PROX) over a CuOx/CeO2-coated microchannel reactor. Catalysis Today, 2013, 203, 182-187.	4.4	31
20	Kinetic analysis and microstructured reactors modeling for the Fischer–Tropsch synthesis over a Co–Re/Al2O3 catalyst. Catalysis Today, 2013, 215, 103-111.	4.4	54
21	Renewable Hydrogen Energy. , 2013, , 1-17.		17
22	Computational Fluid Dynamics as a Tool for Designing Hydrogen Energy Technologies. , 2013, , 401-435.		5
23	Hydrogen Hazards and Risks Analysis through CFD Simulations. , 2013, , 437-452.		2
24	A CFD study on the effect of the characteristic dimension of catalytic wall microreactors. AICHE Journal, 2012, 58, 2785-2797.	3.6	27
25	DRIFTS study of methanol adsorption on Mg–Al hydrotalcite catalysts for the transesterification of vegetable oils. Catalysis Communications, 2012, 17, 189-193.	3.3	23
26	Preferential oxidation of CO (CO-PROX) over CuOx/CeO2 coated microchannel reactor. Catalysis Today, 2012, 180, 105-110.	4.4	42
27	Branching at High Frequency Pulsed Laser Polymerizations of Acrylate Monomers. Macromolecules, 2011, 44, 3674-3679.	4.8	23
28	VOCs combustion catalysed by platinum supported on manganese octahedral molecular sieves. Applied Catalysis B: Environmental, 2011, 110, 231-237.	20.2	54
29	Conversion of a gasoline engine-generator set to a bi-fuel (hydrogen/gasoline) electronic fuel-injected power unit. International Journal of Hydrogen Energy, 2011, 36, 13781-13792.	7.1	32
30	Influence of vegetable oils fatty acid composition on reaction temperature and glycerides conversion to biodiesel during transesterification. Bioresource Technology, 2011, 102, 1044-1050.	9.6	44
31	Fischer–Tropsch synthesis in microchannels. Chemical Engineering Journal, 2011, 167, 536-544.	12.7	91
32	Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels. Chemical Engineering Journal, 2011, 167, 603-609.	12.7	66
33	Selective CO removal over Au/CeFe and CeCu catalysts in microreactors studied through kinetic analysis and CFD simulations. Chemical Engineering Journal, 2011, 167, 588-596.	12.7	38
34	Design and testing of a microchannel reactor for the PROX reaction. Chemical Engineering Journal, 2011, 167, 634-642.	12.7	40
35	Multiple response optimization of vegetable oils fatty acid composition to improve biodiesel physical properties. Bioresource Technology, 2011, 102, 7280-7288.	9.6	91
36	Computational fluid dynamics study of heat transfer in a microchannel reactor for low-temperature Fischer–Tropsch synthesis. Chemical Engineering Journal, 2010, 160, 915-922.	12.7	68

GURUTZE ARZAMENDI

#	Article	IF	CITATIONS
37	Synthesis of biodiesel from the methanolysis of sunflower oil using PURAL® Mg–Al hydrotalcites as catalyst precursors. Applied Catalysis B: Environmental, 2010, 100, 299-309.	20.2	62
38	Iron-modified ceria and Au/ceria catalysts for Total and Preferential Oxidation of CO (TOX and PROX). Catalysis Today, 2010, 157, 155-159.	4.4	94
39	Kinetics and selectivity of methyl-ethyl-ketone combustion in air over alumina-supported PdOx–MnOx catalysts. Journal of Catalysis, 2009, 261, 50-59.	6.2	45
40	Integration of methanol steam reforming and combustion in a microchannel reactor for H2 production: A CFD simulation study. Catalysis Today, 2009, 143, 25-31.	4.4	80
41	Methane steam reforming in a microchannel reactor for GTL intensification: A computational fluid dynamics simulation study. Chemical Engineering Journal, 2009, 154, 168-173.	12.7	80
42	Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Applied Catalysis B: Environmental, 2009, 92, 445-453.	20.2	54
43	Synthesis of biodiesel from sunflower oil with silicaâ€ s upported NaOH catalysts. Journal of Chemical Technology and Biotechnology, 2008, 83, 862-870.	3.2	26
44	Alkaline and alkaline-earth metals compounds as catalysts for the methanolysis of sunflower oil. Catalysis Today, 2008, 133-135, 305-313.	4.4	152
45	Molecular Weight Distribution (Soluble and Insoluble Fraction) in Emulsion Polymerization of Acrylate Monomers by Monte Carlo Simulations. Industrial & Engineering Chemistry Research, 2008, 47, 5934-5947.	3.7	59
46	Kinetics of Methyl Ethyl Ketone Combustion in Air at Low Concentrations over a Commercial Pt/Al2O3Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 9037-9044.	3.7	12
47	Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chemical Engineering Journal, 2007, 134, 123-130.	12.7	249
48	Monitoring of biodiesel production: Simultaneous analysis of the transesterification products using size-exclusion chromatography. Chemical Engineering Journal, 2006, 122, 31-40.	12.7	80
49	Unexpected Crosslinking During Acetoacetoxy Group Protection on Waterborne Crosslinkable Latexes. Macromolecular Materials and Engineering, 2006, 291, 1185-1193.	3.6	13
50	Model Reduction in Emulsion Polymerization Using Hybrid First Principles/Artificial Neural Networks Models, 2. Macromolecular Theory and Simulations, 2005, 14, 125-132.	1.4	4
51	Seeded Semibatch Emulsion Copolymerization ofn-Butyl Acrylate and Methyl Methacrylate. Industrial & Engineering Chemistry Research, 2004, 43, 7401-7409.	3.7	57
52	Branching and crosslinking in emulsion polymerization. Macromolecular Symposia, 2004, 206, 149-164.	0.7	15
53	Evidence of Branching in Poly(butyl acrylate) Produced in Pulsed-Laser Polymerization Experiments. Macromolecular Rapid Communications, 2003, 24, 173-177.	3.9	128
54	Model Reduction in Emulsion Polymerization Using Hybrid First-Principles/Artificial Neural Network Models. Macromolecular Theory and Simulations, 2003, 12, 42-56.	1.4	15

GURUTZE ARZAMENDI

#	Article	IF	CITATIONS
55	Effect of the Intramolecular Chain Transfer to Polymer on PLP/SEC Experiments of Alkyl Acrylates. Macromolecular Theory and Simulations, 2003, 12, 315-324.	1.4	107
56	Molecular weight development in emulsion copolymerization ofn-butyl acrylate and styrene. Journal of Applied Polymer Science, 2003, 87, 1918-1926.	2.6	12
57	Dynamic optimization of non-linear emulsion copolymerization systems Open-loop control of composition and molecular weight distribution. Chemical Engineering Journal, 2002, 85, 339-349.	12.7	45
58	Seeded semibatch emulsion polymerization ofn-butyl acrylate: Effect of the seed properties. Journal of Polymer Science Part A, 2002, 40, 2878-2883.	2.3	13
59	Modeling of Seeded Semibatch Emulsion Polymerization of n-BA. Industrial & Engineering Chemistry Research, 2001, 40, 3883-3894.	3.7	115
60	Kinetics and Polymer Microstructure of the Seeded Semibatch Emulsion Copolymerization ofn-Butyl Acrylate and Styrene. Macromolecules, 2001, 34, 5147-5157.	4.8	102
61	Intramolecular Chain Transfer to Polymer in the Emulsion Polymerization of 2-Ethylhexyl Acrylate. Macromolecules, 2001, 34, 6138-6143.	4.8	86
62	Dynamic optimization of semicontinuous emulsion copolymerization reactions: composition and molecular weight distribution. Computers and Chemical Engineering, 2001, 25, 839-849.	3.8	50
63	Modeling molecular weight distribution in emulsion polymerization reactions with transfer to polymer. Journal of Polymer Science Part A, 2001, 39, 3513-3528.	2.3	30
64	Stereoregulation in cationic polymerization. III. High isospecificity with the bulky phosphoric acid [(RO)2PO2H]/SnCl4 initiating systems: Design of counteranions via initiators. Journal of Polymer Science Part A, 2001, 39, 1067-1074.	2.3	32
65	Seeded semibatch emulsion polymerization of butyl acrylate: Effect of the chain-transfer agent on the kinetics and structural properties. Journal of Polymer Science Part A, 2001, 39, 1106-1119.	2.3	80
66	Dynamic optimization of semicontinuous emulsion copolymerization reactions: Composition and molecular weight distribution. Computer Aided Chemical Engineering, 2000, , 457-462.	0.5	1
67	Kinetics of the seeded semicontinuous emulsion copolymerization of methyl methacrylate and butyl acrylate. Journal of Polymer Science Part A, 2000, 38, 367-375.	2.3	17
68	Molecular weight distribution in composition controlled emulsion copolymerization. Journal of Polymer Science Part A, 2000, 38, 1100-1109.	2.3	35
69	A Decrease in Effective Acrylate Propagation Rate Constants Caused by Intramolecular Chain Transfer. Macromolecules, 2000, 33, 4-7.	4.8	180
70	Seeded Semibatch Emulsion Polymerization ofn-Butyl Acrylate. Kinetics and Structural Properties. Macromolecules, 2000, 33, 5041-5047.	4.8	160
71	Modeling of MWD in Emulsion Polymerization: Partial Distinction Approach. Polymer-Plastics Technology and Engineering, 1998, 6, 193-223.	0.7	25
72	Modeling Gelation and Sol Molecular Weight Distribution in Emulsion Polymerization. Macromolecules, 1995, 28, 7479-7490.	4.8	69

Gurutze Arzamendi

#	Article	IF	CITATIONS
73	High solids content emulsion terpolymerization of vinyl acetate, methyl methacrylate and butyl acrylate. II. Open loop composition control. Journal of Polymer Science Part A, 1994, 32, 1779-1788.	2.3	21
74	Kinetics of Long-Chain Branching in Emulsion Polymerization. Macromolecules, 1994, 27, 6068-6079.	4.8	21
75	Copolymer composition control in emulsion polymerization using technical grade monomers. Polymer International, 1993, 30, 455-460.	3.1	23
76	Optimal monomer addition policies for composition control of emulsion terpolymers. Angewandte Makromolekulare Chemie, 1992, 194, 47-64.	0.2	30
77	Modeling semicontinuous emulsion terpolymerization. Chemical Engineering Science, 1992, 47, 2579-2584.	3.8	45
78	Copolymer composition control of emulsion copolymers in reactors with limited capacity for heat removal. Industrial & amp; Engineering Chemistry Research, 1991, 30, 1342-1350.	3.7	82
79	Semicontinuous seeded emulsion copolymerization of vinyl acetate and methyl acrylate. Journal of Polymer Science Part A, 1991, 29, 169-186.	2.3	25
80	Semicontinuous emulsion copolymerization of methyl methacrylate and ethyl acrylate. Journal of Polymer Science Part A, 1991, 29, 1549-1559.	2.3	30
81	Copolymer composition control during the seeded emulsion copolymerization of vinyl acetate and methyl acrylate. Makromolekulare Chemie Macromolecular Symposia, 1990, 35-36, 249-268.	0.6	46
82	Monomer addition policies for copolymer composition control in semicontinuous emulsion copolymerization. Journal of Applied Polymer Science, 1989, 38, 2019-2036.	2.6	93
83	Hydrotalcites as Catalysts and Catalysts Precursors for the Synthesis of Biodiesel. Key Engineering Materials, 0, 571, 1-26.	0.4	6