Sverre Planke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/539925/publications.pdf

Version: 2024-02-01

89 papers 4,989 citations

38 h-index 95266 68 g-index

116 all docs

116 docs citations

116 times ranked

2779 citing authors

#	Article	IF	CITATIONS
1	Basin structure and prospectivity of the NE Atlantic volcanic rifted margin: cross-border examples from the Faroe–Shetland, Møre and Southern Vøring basins. Geological Society Special Publication, 2022, 495, 99-138.	1.3	14
2	Seismic Volcanostratigraphy: The Key to Resolving the Jan Mayen Microcontinent and Iceland Plateau Rift Evolution. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	3
3	Paleogene drainage system evolution in the NE Faroe–Shetland Basin. Journal of the Geological Society, 2022, 179, .	2.1	3
4	Inside the volcano: Three-dimensional magmatic architecture of a buried shield volcano. Geology, 2021, 49, 243-247.	4.4	19
5	Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020655.	3.4	5
6	Feasibility of using the P-Cable high-resolution 3D seismic system in detecting and monitoring CO2 leakage. International Journal of Greenhouse Gas Control, 2021, 106, 103240.	4.6	7
7	Geochemistry of deep Tunguska Basin sills, Siberian Traps: correlations and potential implications for the end-Permian environmental crisis. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	11
8	The Rosebank Field, NE Atlantic: Volcanic characterisation of an interâ€lava hydrocarbon discovery. Basin Research, 2021, 33, 2883-2913.	2.7	16
9	Volcanic facies architecture of early bimodal volcanism of the NW Deccan Traps: Volcanic reservoirs of the Raageshwari Deep Gas Field, Barmer Basin, India. Basin Research, 2021, 33, 3348-3377.	2.7	11
10	Characterization of a glacial paleo-outburst flood using high-resolution 3-D seismic data: BjÃ,rnelva River Valley, SW Barents Sea. Journal of Glaciology, 2021, 67, 404-420.	2.2	5
11	Sub-surface geology and velocity structure of the Krafla high temperature geothermal field, Iceland: Integrated ditch cuttings, wireline and zero offset vertical seismic profile analysis. Journal of Volcanology and Geothermal Research, 2020, 391, 106342.	2.1	11
12	Imaging the high-temperature geothermal field at Krafla using vertical seismic profiling. Journal of Volcanology and Geothermal Research, 2020, 391, 106474.	2.1	6
13	Nested intrashelf platform clinoformsâ€"Evidence of shelf platform growth exemplified by Lower Cretaceous strata in the Barents Sea. Basin Research, 2020, 32, 216-223.	2.7	8
14	Lower Cretaceous Barents Sea strata: epicontinental basin configuration, timing, correlation and depositional dynamics. Geological Magazine, 2020, 157, 458-476.	1.5	14
15	The 3D facies architecture and petrophysical properties of hyaloclastite delta deposits: An integrated photogrammetry and petrophysical study from southern Iceland. Basin Research, 2020, 32, 1081-1104.	2.7	10
16	The tectonized central peak of the Mjølnir Impact Crater, Barents Sea. Journal of Structural Geology, 2020, 131, 103953.	2.3	1
17	Deformation Analysis in the Barents Sea in Relation to Paleogene Transpression Along the Greenlandâ€Eurasia Plate Boundary. Tectonics, 2020, 39, e2020TC006172.	2.8	11
18	A nutrient control on marine anoxia during the end-Permian mass extinction. Nature Geoscience, 2020, 13, 640-646.	12.9	56

#	Article	IF	CITATIONS
19	Upper Cretaceous-Paleogene stratigraphy and development of the MÃmir High, Vøring Transform Margin, Norwegian Sea. Marine and Petroleum Geology, 2020, 122, 104717.	3.3	10
20	Stress Field Interactions Between Overlapping Shield Volcanoes: Borehole Breakout Evidence From the Island of Hawai'i, USA. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019768.	3.4	10
21	Regional structure and polyphased Cretaceous-Paleocene rift and basin development of the mid-Norwegian volcanic passive margin. Marine and Petroleum Geology, 2020, 115, 104269.	3.3	42
22	A Mantle Plume Origin for the Scandinavian Dyke Complex: A "Piercing Point―for 615ÂMa Plate Reconstruction of Baltica?. Geochemistry, Geophysics, Geosystems, 2019, 20, 1075-1094.	2.5	61
23	Timing of Breakup and Thermal Evolution of a Preâ€Caledonian Neoproterozoic Exhumed Magmaâ€Rich Rifted Margin. Tectonics, 2019, 38, 1843-1862.	2.8	36
24	Mercury anomalies across the Palaeocene–Eocene Thermal Maximum. Climate of the Past, 2019, 15, 217-236.	3.4	76
25	The main pulse of the Siberian Traps expanded in size and composition. Scientific Reports, 2019, 9, 18723.	3.3	50
26	Breakup volcanism and plate tectonics in the NW Atlantic. Tectonophysics, 2019, 760, 267-296.	2.2	37
27	Evidence for magma–evaporite interactions during the emplacement of the Central Atlantic Magmatic Province (CAMP) in Brazil. Earth and Planetary Science Letters, 2019, 506, 476-492.	4.4	49
28	Shear margin moraine, mass transport deposits and soft beds revealed by high-resolution P-Cable three-dimensional seismic data in the Hoop area, Barents Sea. Geological Society Special Publication, 2019, 477, 537-548.	1.3	11
29	The pre-breakup stratigraphy and petroleum system of the Southern Jan Mayen Ridge revealed by seafloor sampling. Tectonophysics, 2019, 760, 152-164.	2.2	12
30	Cretaceousâ€Paleocene Evolution and Crustal Structure of the Northern Vøring Margin (Offshore) Tj ETQq0 0	0 rg <u>B</u> T /Ον	erlock 10 Tf 50
31	Ice-stream dynamics of the SW Barents Sea revealed by high-resolution 3D seismic imaging of glacial deposits in the Hoop area. Marine Geology, 2018, 402, 165-183.	2.1	22
32	Toward one-meter resolution in 3D seismic. The Leading Edge, 2018, 37, 818-828.	0.7	24
33	Sills and gas generation in the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170080.	3.4	31
34	A diverted submarine channel of Early Cretaceous age revealed by high-resolution seismic data, SW Barents Sea. Marine and Petroleum Geology, 2018, 98, 462-476.	3.3	13
35	Magnetotelluric evidence for massive sulphide mineralization in intruded sediments of the outer VÃ,ring Basin, mid-Norway. Tectonophysics, 2017, 706-707, 196-205.	2.2	14
36	Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 2017, 467, 30-42.	4.4	65

#	Article	IF	CITATIONS
37	Hydrothermal vent complexes offshore Northeast Greenland: A potential role in driving the PETM. Earth and Planetary Science Letters, 2017, 467, 72-78.	4.4	57
38	Mafic intrusions, hydrothermal venting, and the basalt-sediment transition: Linking onshore and offshore examples from the North Atlantic igneous province. Interpretation, 2017, 5, SK83-SK101.	1.1	29
39	3D structure and formation of hydrothermal vent complexes at the Paleocene-Eocene transition, the MÃ,re Basin, mid-Norwegian margin. Interpretation, 2017, 5, SK65-SK81.	1.1	37
40	The <i>T</i> i>â∈Reflection and the Deep Crustal Structure of the VÃ,ring Margin, Offshore midâ∈Norway. Tectonics, 2017, 36, 2497-2523.	2.8	45
41	Constraining shifts in North Atlantic plate motions during the Palaeocene by U-Pb dating of Svalbard tephra layers. Scientific Reports, 2017, 7, 6822.	3.3	24
42	Igneous seismic geomorphology of buried lava fields and coastal escarpments on the $V\tilde{A}_{s}$, ring volcanic rifted margin. Interpretation, 2017, 5, SK161-SK177.	1.1	51
43	The development of volcanic sequences at rifted margins: New insights from the structure and morphology of the Vøring Escarpment, midâ€Norwegian Margin. Journal of Geophysical Research: Solid Earth, 2016, 121, 5212-5236.	3.4	75
44	The geology of offshore drilling through basalt sequences: Understanding operational complications to improve efficiency. Marine and Petroleum Geology, 2016, 77, 1177-1192.	3.3	47
45	The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a) in Svalbard, Barents Sea, and the absolute age of the Barremian-Aptian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463, 126-135.	2.3	54
46	Provenance of bentonite layers in the Palaeocene strata of the Central Basin, Svalbard: implications for magmatism and rifting events around the onset of the North Atlantic Igneous Province. Journal of Volcanology and Geothermal Research, 2016, 327, 571-584.	2.1	11
47	Thermogenic methane release as a cause for the long duration of the PETM. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12059-12064.	7.1	92
48	The Early Cretaceous Barents Sea Sill Complex: Distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 83-95.	2.3	114
49	Pre-breakup magmatism on the VÃ, ring Margin: Insight from new sub-basalt imaging and results from Ocean Drilling Program Hole 642E. Tectonophysics, 2016, 675, 258-274.	2.2	44
50	The onset of flood volcanism in the north-western part of the Siberian Traps: Explosive volcanism versus effusive lava flows. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 38-50.	2.3	43
51	Geophysics and Remote Sensing. Advances in Volcanology, 2015, , 131-146.	1.1	26
52	Contact metamorphism and thermogenic gas generation in the Vøring and Møre basins, offshore Norway, during the Paleocene–Eocene thermal maximum. Journal of the Geological Society, 2015, 172, 588-598.	2.1	62
53	The ocean-continent transition in the mid-Norwegian margin: Insight from seismic data and an onshore Caledonian field analogue. Geology, 2015, 43, 1011-1014.	4.4	55
54	Late Mesozoic magmatism in Svalbard: A review. Earth-Science Reviews, 2014, 139, 123-144.	9.1	72

#	Article	IF	CITATIONS
55	A petrologic, geochemical and Sr–Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia. Contributions To Mineralogy and Petrology, 2013, 165, 683-704.	3.1	17
56	Sill and lava geochemistry of the midâ€Norway and NE Greenland conjugate margins. Geochemistry, Geophysics, Geosystems, 2013, 14, 3666-3690.	2.5	16
57	U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province. Geological Magazine, 2013, 150, 1127-1135.	1.5	130
58	The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	57
59	U-Pb and geochemical evidence for a Cryogenian magmatic arc in central Novaya Zemlya, Arctic Russia. Terra Nova, 2010, 22, 116-124.	2.1	21
60	Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society, 2010, 167, 433-436.	2.1	85
61	Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained by temperature monitoring and time series analysis. Journal of Geophysical Research, 2009, 114, .	3.3	21
62	P-Cable High-Resolution Seismic. Oceanography, 2009, 22, 85-85.	1.0	45
63	How are saucerâ€shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. Journal of Geophysical Research, 2008, 113, .	3.3	58
64	Vent complex at Heidrun. , 2008, , .		2
65	A moderate melting model for the $V\tilde{A}_{j}$ ring margin (Norway) based on structural observations and a thermo-kinematical modelling: Implication for the meaning of the lower crustal bodies. Tectonophysics, 2006, 412, 255-278.	2.2	74
66	Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. Petroleum Geology Conference Proceedings, 2005, 6, 833-844.	0.7	205
67	Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 2004, 429, 542-545.	27.8	851
68	Deep structures and breakup along volcanic rifted margins: insights from integrated studies along the outer VÃ,ring Basin (Norway). Marine and Petroleum Geology, 2004, 21, 363-372.	3.3	132
69	Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Geological Society Special Publication, 2004, 234, 233-241.	1.3	119
70	Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the $Vi;\frac{1}{2}$ ring Basin, the Norwegian Sea. Geo-Marine Letters, 2003, 23, 351-358.	1.1	79
71	Extension, crustal structure and magmatism at the outer VÃ, ring Basin, Norwegian margin. Journal of the Geological Society, 2003, 160, 197-208.	2.1	104
72	Title is missing!. Marine Geophysical Researches, 2001, 22, 133-152.	1.2	51

#	Article	IF	Citations
73	Seismic volcanostratigraphy of the Norwegian Margin: constraints on tectonomagmatic break-up processes. Journal of the Geological Society, 2001, 158, 413-426.	2.1	119
74	Atlantic volcanic margins: a comparative study. Geological Society Special Publication, 2000, 167, 411-428.	1.3	39
75	Norwegian-Greenland Sea thermal field. Geological Society Special Publication, 2000, 167, 397-410.	1.3	20
76	High-velocity breakup-related sills in the VÃ, ring Basin, off Norway. Journal of Geophysical Research, 2000, 105, 28443-28454.	3.3	71
77	NE Atlantic continental rifting and volcanic margin formation. Geological Society Special Publication, 2000, 167, 295-326.	1.3	151
78	Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins. Journal of Geophysical Research, 2000, 105, 19335-19351.	3.3	337
79	Recent volcanic rocks from Jan Mayen: Low-degree melt fractions of enriched northeast Atlantic mantle. Journal of Geophysical Research, 1999, 104, 7153-7168.	3.3	43
80	Deep crustal structure and rheology of the Gascoyne volcanic margin, western Australia. Marine Geophysical Researches, 1998, 20, 293-311.	1.2	23
81	Seismic response and construction of seaward dipping wedges of flood basalts: Vøring volcanic margin. Journal of Geophysical Research, 1994, 99, 9263-9278.	3.3	115
82	Geophysical response of flood basalts from analysis of wire line logs: Ocean Drilling Program Site 642, VA,ring volcanic margin. Journal of Geophysical Research, 1994, 99, 9279-9296.	3.3	97
83	Crustal structure off Norway, 62° to 70° north. Tectonophysics, 1991, 189, 91-107.	2.2	97
84	Opportunistic magnetotelluric transects from CSEM surveys in the Barents Sea. Geophysical Journal International, $0, , .$	2.4	1
85	Characterisation and development of Early Cretaceous shelf platform deposition and faulting in the Hoop area, southwestern Barents Sea—constrained by high-resolution seismic data. Norwegian Journal of Geology, 0, , .	0.5	4
86	Seismic properties of flood basalts from Hole 917A downhole data, southeast Greenland volcanic margin. , 0, , .		11
87	Alteration effects on petrophysical properties of subaerial flood basalts: Site 990, Southeast Greenland margin. , 0, , .		7
88	Understanding volcanic facies in the subsurface: a combined core, wireline logging and image log data set from the PTA2 and KMA1 boreholes, Big Island, Hawai. Scientific Drilling, 0, 25, 15-33.	0.6	20
89	Northeast Atlantic breakup volcanism and consequences for Paleogene climate change – MagellanPlus Workshop report. Scientific Drilling, 0, 26, 69-85.	0.6	6