List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/539925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 2004, 429, 542-545.	27.8	851
2	Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins. Journal of Geophysical Research, 2000, 105, 19335-19351.	3.3	337
3	Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the VÃ,ring and MÃ,re basins. Petroleum Geology Conference Proceedings, 2005, 6, 833-844.	0.7	205
4	NE Atlantic continental rifting and volcanic margin formation. Geological Society Special Publication, 2000, 167, 295-326.	1.3	151
5	Deep structures and breakup along volcanic rifted margins: insights from integrated studies along the outer VÃ _r ring Basin (Norway). Marine and Petroleum Geology, 2004, 21, 363-372.	3.3	132
6	U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province. Geological Magazine, 2013, 150, 1127-1135.	1.5	130
7	Seismic volcanostratigraphy of the Norwegian Margin: constraints on tectonomagmatic break-up processes. Journal of the Geological Society, 2001, 158, 413-426.	2.1	119
8	Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Geological Society Special Publication, 2004, 234, 233-241.	1.3	119
9	Seismic response and construction of seaward dipping wedges of flood basalts: VÃ,ring volcanic margin. Journal of Geophysical Research, 1994, 99, 9263-9278.	3.3	115
10	The Early Cretaceous Barents Sea Sill Complex: Distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 83-95.	2.3	114
11	Extension, crustal structure and magmatism at the outer Vøring Basin, Norwegian margin. Journal of the Geological Society, 2003, 160, 197-208.	2.1	104
12	Crustal structure off Norway, 62° to 70° north. Tectonophysics, 1991, 189, 91-107.	2.2	97
13	Geophysical response of flood basalts from analysis of wire line logs: Ocean Drilling Program Site 642, VÃ _r ring volcanic margin. Journal of Geophysical Research, 1994, 99, 9279-9296.	3.3	97
14	Thermogenic methane release as a cause for the long duration of the PETM. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12059-12064.	7.1	92
15	Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society, 2010, 167, 433-436.	2.1	85
16	Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the Viį¼zring Basin, the Norwegian Sea. Geo-Marine Letters, 2003, 23, 351-358.	1.1	79
17	Mercury anomalies across the Palaeocene–Eocene Thermal Maximum. Climate of the Past, 2019, 15, 217-236.	3.4	76
18	The development of volcanic sequences at rifted margins: New insights from the structure and morphology of the VÃring Escarpment, midâ€Norwegian Margin. Journal of Geophysical Research: Solid Earth, 2016, 121, 5212-5236.	3.4	75

#	Article	IF	CITATIONS
19	A moderate melting model for the VÃ,ring margin (Norway) based on structural observations and a thermo-kinematical modelling: Implication for the meaning of the lower crustal bodies. Tectonophysics, 2006, 412, 255-278.	2.2	74
20	Late Mesozoic magmatism in Svalbard: A review. Earth-Science Reviews, 2014, 139, 123-144.	9.1	72
21	High-velocity breakup-related sills in the VÃ,ring Basin, off Norway. Journal of Geophysical Research, 2000, 105, 28443-28454.	3.3	71
22	Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 2017, 467, 30-42.	4.4	65
23	Contact metamorphism and thermogenic gas generation in the VÃring and MÃre basins, offshore Norway, during the Paleocene–Eocene thermal maximum. Journal of the Geological Society, 2015, 172, 588-598.	2.1	62
24	A Mantle Plume Origin for the Scandinavian Dyke Complex: A "Piercing Point―for 615ÂMa Plate Reconstruction of Baltica?. Geochemistry, Geophysics, Geosystems, 2019, 20, 1075-1094.	2.5	61
25	How are saucerâ€shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. Journal of Geophysical Research, 2008, 113, .	3.3	58
26	The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	57
27	Hydrothermal vent complexes offshore Northeast Greenland: A potential role in driving the PETM. Earth and Planetary Science Letters, 2017, 467, 72-78.	4.4	57
28	A nutrient control on marine anoxia during the end-Permian mass extinction. Nature Geoscience, 2020, 13, 640-646.	12.9	56
29	The ocean-continent transition in the mid-Norwegian margin: Insight from seismic data and an onshore Caledonian field analogue. Geology, 2015, 43, 1011-1014.	4.4	55
30	The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a) in Svalbard, Barents Sea, and the absolute age of the Barremian-Aptian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463, 126-135.	2.3	54
31	Title is missing!. Marine Geophysical Researches, 2001, 22, 133-152.	1.2	51
32	lgneous seismic geomorphology of buried lava fields and coastal escarpments on the VÃ,ring volcanic rifted margin. Interpretation, 2017, 5, SK161-SK177.	1.1	51
33	The main pulse of the Siberian Traps expanded in size and composition. Scientific Reports, 2019, 9, 18723.	3.3	50
34	Evidence for magma–evaporite interactions during the emplacement of the Central Atlantic Magmatic Province (CAMP) in Brazil. Earth and Planetary Science Letters, 2019, 506, 476-492.	4.4	49
35	The geology of offshore drilling through basalt sequences: Understanding operational complications to improve efficiency. Marine and Petroleum Geology, 2016, 77, 1177-1192.	3.3	47
36	The <i>T</i> â€Reflection and the Deep Crustal Structure of the VÃ,ring Margin, Offshore midâ€Norway. Tectonics, 2017, 36, 2497-2523.	2.8	45

#	Article	IF	CITATIONS
37	P-Cable High-Resolution Seismic. Oceanography, 2009, 22, 85-85.	1.0	45
38	Pre-breakup magmatism on the VÃring Margin: Insight from new sub-basalt imaging and results from Ocean Drilling Program Hole 642E. Tectonophysics, 2016, 675, 258-274.	2.2	44
39	Recent volcanic rocks from Jan Mayen: Low-degree melt fractions of enriched northeast Atlantic mantle. Journal of Geophysical Research, 1999, 104, 7153-7168.	3.3	43
40	The onset of flood volcanism in the north-western part of the Siberian Traps: Explosive volcanism versus effusive lava flows. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 38-50.	2.3	43
41	Regional structure and polyphased Cretaceous-Paleocene rift and basin development of the mid-Norwegian volcanic passive margin. Marine and Petroleum Geology, 2020, 115, 104269.	3.3	42
42	Atlantic volcanic margins: a comparative study. Geological Society Special Publication, 2000, 167, 411-428.	1.3	39
43	3D structure and formation of hydrothermal vent complexes at the Paleocene-Eocene transition, the MÃ,re Basin, mid-Norwegian margin. Interpretation, 2017, 5, SK65-SK81.	1.1	37
44	Breakup volcanism and plate tectonics in the NW Atlantic. Tectonophysics, 2019, 760, 267-296.	2.2	37
45	Cretaceousâ€Paleocene Evolution and Crustal Structure of the Northern VÃ,ring Margin (Offshore) Tj ETQq1 1	0.784314 2.8	rgBT /Overlact
46	Timing of Breakup and Thermal Evolution of a Pre aledonian Neoproterozoic Exhumed Magmaâ€Rich Rifted Margin. Tectonics, 2019, 38, 1843-1862.	2.8	36
47	Sills and gas generation in the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170080.	3.4	31
48	Mafic intrusions, hydrothermal venting, and the basalt-sediment transition: Linking onshore and offshore examples from the North Atlantic igneous province. Interpretation, 2017, 5, SK83-SK101.	1.1	29
49	Geophysics and Remote Sensing. Advances in Volcanology, 2015, , 131-146.	1.1	26
50	Constraining shifts in North Atlantic plate motions during the Palaeocene by U-Pb dating of Svalbard tephra layers. Scientific Reports, 2017, 7, 6822.	3.3	24
51	Toward one-meter resolution in 3D seismic. The Leading Edge, 2018, 37, 818-828.	0.7	24
52	Deep crustal structure and rheology of the Gascoyne volcanic margin, western Australia. Marine Geophysical Researches, 1998, 20, 293-311.	1.2	23
53	Ice-stream dynamics of the SW Barents Sea revealed by high-resolution 3D seismic imaging of glacial deposits in the Hoop area. Marine Geology, 2018, 402, 165-183.	2.1	22
54	Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained by temperature monitoring and time series analysis. Journal of Geophysical Research, 2009, 114, .	3.3	21

#	Article	IF	CITATIONS
55	U-Pb and geochemical evidence for a Cryogenian magmatic arc in central Novaya Zemlya, Arctic Russia. Terra Nova, 2010, 22, 116-124.	2.1	21
56	Norwegian-Greenland Sea thermal field. Geological Society Special Publication, 2000, 167, 397-410.	1.3	20
57	Understanding volcanic facies in the subsurface: a combined core, wireline logging and image log data set from the PTA2 and KMA1 boreholes, Big Island, Hawai`i. Scientific Drilling, 0, 25, 15-33.	0.6	20
58	Inside the volcano: Three-dimensional magmatic architecture of a buried shield volcano. Geology, 2021, 49, 243-247.	4.4	19
59	A petrologic, geochemical and Sr–Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia. Contributions To Mineralogy and Petrology, 2013, 165, 683-704.	3.1	17
60	Sill and lava geochemistry of the midâ€Norway and NE Greenland conjugate margins. Geochemistry, Geophysics, Geosystems, 2013, 14, 3666-3690.	2.5	16
61	The Rosebank Field, NE Atlantic: Volcanic characterisation of an interâ€lava hydrocarbon discovery. Basin Research, 2021, 33, 2883-2913.	2.7	16
62	Magnetotelluric evidence for massive sulphide mineralization in intruded sediments of the outer VÅ,ring Basin, mid-Norway. Tectonophysics, 2017, 706-707, 196-205.	2.2	14
63	Basin structure and prospectivity of the NE Atlantic volcanic rifted margin: cross-border examples from the Faroe–Shetland, MÃ,re and Southern VÃ,ring basins. Geological Society Special Publication, 2022, 495, 99-138.	1.3	14
64	Lower Cretaceous Barents Sea strata: epicontinental basin configuration, timing, correlation and depositional dynamics. Geological Magazine, 2020, 157, 458-476.	1.5	14
65	A diverted submarine channel of Early Cretaceous age revealed by high-resolution seismic data, SW Barents Sea. Marine and Petroleum Geology, 2018, 98, 462-476.	3.3	13
66	The pre-breakup stratigraphy and petroleum system of the Southern Jan Mayen Ridge revealed by seafloor sampling. Tectonophysics, 2019, 760, 152-164.	2.2	12
67	Provenance of bentonite layers in the Palaeocene strata of the Central Basin, Svalbard: implications for magmatism and rifting events around the onset of the North Atlantic Igneous Province. Journal of Volcanology and Geothermal Research, 2016, 327, 571-584.	2.1	11
68	Shear margin moraine, mass transport deposits and soft beds revealed by high-resolution P-Cable three-dimensional seismic data in the Hoop area, Barents Sea. Geological Society Special Publication, 2019, 477, 537-548.	1.3	11
69	Sub-surface geology and velocity structure of the Krafla high temperature geothermal field, Iceland: Integrated ditch cuttings, wireline and zero offset vertical seismic profile analysis. Journal of Volcanology and Geothermal Research, 2020, 391, 106342.	2.1	11
70	Deformation Analysis in the Barents Sea in Relation to Paleogene Transpression Along the Greenlandâ€Eurasia Plate Boundary. Tectonics, 2020, 39, e2020TC006172.	2.8	11
71	Geochemistry of deep Tunguska Basin sills, Siberian Traps: correlations and potential implications for the end-Permian environmental crisis. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	11
72	Volcanic facies architecture of early bimodal volcanism of the NW Deccan Traps: Volcanic reservoirs of the Raageshwari Deep Gas Field, Barmer Basin, India. Basin Research, 2021, 33, 3348-3377.	2.7	11

#	Article	IF	CITATIONS
73	Seismic properties of flood basalts from Hole 917A downhole data, southeast Greenland volcanic margin. , 0, , .		11
74	The 3D facies architecture and petrophysical properties of hyaloclastite delta deposits: An integrated photogrammetry and petrophysical study from southern Iceland. Basin Research, 2020, 32, 1081-1104.	2.7	10
75	Upper Cretaceous-Paleogene stratigraphy and development of the MÃmir High, VÃ,ring Transform Margin, Norwegian Sea. Marine and Petroleum Geology, 2020, 122, 104717.	3.3	10
76	Stress Field Interactions Between Overlapping Shield Volcanoes: Borehole Breakout Evidence From the Island of Hawai'i, USA. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019768.	3.4	10
77	Nested intrashelf platform clinoforms—Evidence of shelf platform growth exemplified by Lower Cretaceous strata in the Barents Sea. Basin Research, 2020, 32, 216-223.	2.7	8
78	Feasibility of using the P-Cable high-resolution 3D seismic system in detecting and monitoring CO2 leakage. International Journal of Greenhouse Gas Control, 2021, 106, 103240.	4.6	7
79	Alteration effects on petrophysical properties of subaerial flood basalts: Site 990, Southeast Greenland margin. , 0, , .		7
80	lmaging the high-temperature geothermal field at Krafla using vertical seismic profiling. Journal of Volcanology and Geothermal Research, 2020, 391, 106474.	2.1	6
81	Northeast Atlantic breakup volcanism and consequences for Paleogene climate change – MagellanPlus Workshop report. Scientific Drilling, 0, 26, 69-85.	0.6	6
82	Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020655.	3.4	5
83	Characterization of a glacial paleo-outburst flood using high-resolution 3-D seismic data: BjÃ,rnelva River Valley, SW Barents Sea. Journal of Glaciology, 2021, 67, 404-420.	2.2	5
84	Characterisation and development of Early Cretaceous shelf platform deposition and faulting in the Hoop area, southwestern Barents Sea—constrained by high-resolution seismic data. Norwegian Journal of Geology, 0, , .	0.5	4
85	Seismic Volcanostratigraphy: The Key to Resolving the Jan Mayen Microcontinent and Iceland Plateau Rift Evolution. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	3
86	Paleogene drainage system evolution in the NE Faroe–Shetland Basin. Journal of the Geological Society, 2022, 179, .	2.1	3
87	Vent complex at Heidrun. , 2008, , .		2
88	The tectonized central peak of the MjÃ,lnir Impact Crater, Barents Sea. Journal of Structural Geology, 2020, 131, 103953.	2.3	1
89	Opportunistic magnetotelluric transects from CSEM surveys in the Barents Sea. Geophysical Journal International, 0, , .	2.4	1