
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5399143/publications.pdf Version: 2024-02-01

IFSSE H KROU

#	Article	IF	CITATIONS
1	Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 1549-1573.	1.9	33
2	The Parallel Transformations of Polycyclic Aromatic Hydrocarbons in the Body and in the Atmosphere. Environmental Health Perspectives, 2022, 130, 25004.	2.8	19
3	Thank You to Our 2021 Reviewers. Earth's Future, 2022, 10, .	2.4	Ο
4	Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-anthropogenic PM _{2.5} . Environmental Science and Technology Letters, 2022, 9, 501-506.	3.9	41
5	Laboratory Investigation of Renoxification from the Photolysis of Inorganic Particulate Nitrate. Environmental Science & Technology, 2021, 55, 854-861.	4.6	46
6	Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase. Atmospheric Measurement Techniques, 2021, 14, 2501-2513.	1.2	5
7	Influence of the NO/NO ₂ Ratio on Oxidation Product Distributions under High-NO Conditions. Environmental Science & Technology, 2021, 55, 6594-6601.	4.6	13
8	Mapping pollution exposure and chemistry during an extreme air quality event (the 2018 Kīlauea) Tj ETQq0 0 United States of America, 2021, 118, .	0 rgBT /Ov 3.3	verlock 10 Tf 5 13
9	Organic Sulfur Products and Peroxy Radical Isomerization in the OH Oxidation of Dimethyl Sulfide. ACS Earth and Space Chemistry, 2021, 5, 2013-2020.	1.2	20
10	Investigating Carbonaceous Aerosol and Its Absorption Properties From Fires in the Western United States (WE AN) and Southern Africa (ORACLES and CLARIFY). Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034984.	1.2	21
11	Screening for New Pathways in Atmospheric Oxidation Chemistry with Automated Mechanism Generation. Journal of Physical Chemistry A, 2021, 125, 6772-6788.	1.1	7
12	Global Cancer Risk From Unregulated Polycyclic Aromatic Hydrocarbons. GeoHealth, 2021, 5, e2021GH000401.	1.9	21
13	Real-Time Laboratory Measurements of VOC Emissions, Removal Rates, and Byproduct Formation from Consumer-Grade Oxidation-Based Air Cleaners. Environmental Science and Technology Letters, 2021, 8, 1020-1025.	3.9	14
14	A radical shift in air pollution. Science, 2021, 374, 688-689.	6.0	6
15	Chemistry of Functionalized Reactive Organic Intermediates in the Earth's Atmosphere: Impact, Challenges, and Progress. Journal of Physical Chemistry A, 2021, 125, 10264-10279.	1.1	3
16	Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NO _{<i>x</i>} Level. Journal of Physical Chemistry A, 2021, 125, 10303-10314.	1.1	7
17	Biomass-burning-derived particles from a wide variety of fuels – Part 2: Effects of photochemical aging on particle optical and chemical properties. Atmospheric Chemistry and Physics, 2020, 20, 8511-8532.	1.9	41
18	A biogenic secondary organic aerosol source of cirrus ice nucleating particles. Nature Communications, 2020, 11, 4834.	5.8	45

#	Article	IF	CITATIONS
19	Pressure-dependent kinetics of peroxy radicals formed in isobutanol combustion. Physical Chemistry Chemical Physics, 2020, 22, 19802-19815.	1.3	4
20	The complex chemical effects of COVID-19 shutdowns on air quality. Nature Chemistry, 2020, 12, 777-779.	6.6	154
21	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. Environmental Science & Technology, 2020, 54, 8568-8579.	4.6	72
22	Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments. Atmospheric Chemistry and Physics, 2020, 20, 1021-1041.	1.9	19
23	Biomass-burning-derived particles from a wide variety of fuels – Part 1: Properties of primary particles. Atmospheric Chemistry and Physics, 2020, 20, 1531-1547.	1.9	62
24	The fuel of atmospheric chemistry: Toward a complete description of reactive organic carbon. Science Advances, 2020, 6, eaay8967.	4.7	67
25	Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmospheric Measurement Techniques, 2020, 13, 6343-6355.	1.2	72
26	Inferring Aerosol Sources from Low-Cost Air Quality Sensor Measurements: A Case Study in Delhi, India. Environmental Science and Technology Letters, 2019, 6, 467-472.	3.9	34
27	Photolytic Aging of Secondary Organic Aerosol: Evidence for a Substantial Photo-Recalcitrant Fraction. Journal of Physical Chemistry Letters, 2019, 10, 4003-4009.	2.1	31
28	Measurement techniques for identifying and quantifying hydroxymethanesulfonate (HMS) in an aqueous matrix and particulate matter using aerosol mass spectrometry and ion chromatography. Atmospheric Measurement Techniques, 2019, 12, 5303-5315.	1.2	23
29	Joint Impacts of Acidity and Viscosity on the Formation of Secondary Organic Aerosol from Isoprene Epoxydiols (IEPOX) in Phase Separated Particles. ACS Earth and Space Chemistry, 2019, 3, 2646-2658.	1.2	80
30	Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. Atmospheric Chemistry and Physics, 2019, 19, 12797-12809.	1.9	67
31	Infrared Ion Spectroscopy of Environmental Organic Mixtures: Probing the Composition of α-Pinene Secondary Organic Aerosol. Environmental Science & Technology, 2019, 53, 7604-7612.	4.6	19
32	Ultrasonic nebulization for the elemental analysis of microgram-level samples with offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 1659-1671.	1.2	15
33	Chemical Characterization of Isoprene- and Monoterpene-Derived Secondary Organic Aerosol Tracers in Remote Marine Aerosols over a Quarter Century. ACS Earth and Space Chemistry, 2019, 3, 935-946.	1.2	27
34	Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol. Aerosol Science and Technology, 2019, 53, 663-674.	1,5	55
35	Using collision-induced dissociation to constrain sensitivity of ammonia chemical ionization mass spectrometry (NH ₄ ⁺) 1861-1870.	Tj ETQq1 1 1.2	0.784314 rg8
36	OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. Atmospheric Chemistry and Physics, 2019, 19, 14875-14899.	1.9	92

#	Article	IF	CITATIONS
37	Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions. Atmospheric Chemistry and Physics, 2019, 19, 15117-15129.	1.9	52
38	Chemical evolution of atmospheric organic carbon over multiple generations of oxidation. Nature Chemistry, 2018, 10, 462-468.	6.6	92
39	Causes and consequences of decreasing atmospheric organic aerosol in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 290-295.	3.3	62
40	Evolution in the Reactivity of Citric Acid toward Heterogeneous Oxidation by Gas-Phase OH Radicals. ACS Earth and Space Chemistry, 2018, 2, 1323-1329.	1.2	15
41	Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling. Atmospheric Chemistry and Physics, 2018, 18, 12433-12460.	1.9	12
42	Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments. Atmospheric Measurement Techniques, 2018, 11, 315-328.	1.2	89
43	The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Technology, 2017, 51, 2519-2528.	4.6	75
44	Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: current capabilities and remaining gaps. Faraday Discussions, 2017, 200, 579-598.	1.6	37
45	Formation of Low-Volatility Organic Compounds in the Atmosphere: Recent Advancements and Insights. Journal of Physical Chemistry Letters, 2017, 8, 1503-1511.	2.1	78
46	Rapid heterogeneous oxidation of organic coatings on submicron aerosols. Geophysical Research Letters, 2017, 44, 2949-2957.	1.5	28
47	Atmospheric chemistry processes: general discussion. Faraday Discussions, 2017, 200, 353-378.	1.6	0
48	The air we breathe: Past, present, and future: general discussion. Faraday Discussions, 2017, 200, 501-527.	1.6	1
49	New tools for atmospheric chemistry: general discussion. Faraday Discussions, 2017, 200, 663-691.	1.6	0
50	Comprehensive characterization of atmospheric organic carbon at a forested site. Nature Geoscience, 2017, 10, 748-753.	5.4	66
51	In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor. Atmospheric Chemistry and Physics, 2016, 16, 2943-2970.	1.9	122
52	Effects of Condensed-Phase Oxidants on Secondary Organic Aerosol Formation. Journal of Physical Chemistry A, 2016, 120, 1386-1394.	1.1	31
53	Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield. Atmospheric Chemistry and Physics, 2015, 15, 3063-3075.	1.9	177
54	Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. Atmospheric Chemistry and Physics, 2015, 15, 7765-7776.	1.9	126

#	Article	IF	CITATIONS
55	Changes to the Chemical Composition of Soot from Heterogeneous Oxidation Reactions. Journal of Physical Chemistry A, 2015, 119, 1154-1163.	1.1	33
56	Radical Reactivity in the Condensed Phase: Intermolecular versus Intramolecular Reactions of Alkoxy Radicals. Journal of Physical Chemistry Letters, 2015, 6, 2388-2392.	2.1	9
57	Atmospheric Evolution of Sulfur Emissions from KıÌlauea: Real-Time Measurements of Oxidation, Dilution, and Neutralization within a Volcanic Plume. Environmental Science & Technology, 2015, 49, 4129-4137.	4.6	29
58	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 2015, 15, 253-272.	1.9	736
59	Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon. Journal of Physical Chemistry A, 2015, 119, 10767-10783.	1.1	126
60	Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine. Environmental Science & Technology, 2015, 49, 13483-13491.	4.6	34
61	Chemical Compositions of Black Carbon Particle Cores and Coatings via Soot Particle Aerosol Mass Spectrometry with Photoionization and Electron Ionization. Journal of Physical Chemistry A, 2015, 119, 4589-4599.	1.1	44
62	Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmospheric Chemistry and Physics, 2014, 14, 5513-5527.	1.9	171
63	Secondary Organic Aerosol Formation from Acyclic, Monocyclic, and Polycyclic Alkanes. Environmental Science & Technology, 2014, 48, 10227-10234.	4.6	55
64	Secondary Organic Aerosol Formation via the Isolation of Individual Reactive Intermediates: Role of Alkoxy Radical Structure. Journal of Physical Chemistry A, 2014, 118, 8807-8816.	1.1	16
65	Influence of Molecular Structure and Chemical Functionality on the Heterogeneous OH-Initiated Oxidation of Unsaturated Organic Particles. Journal of Physical Chemistry A, 2014, 118, 4106-4119.	1.1	32
66	Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution. Atmospheric Chemistry and Physics, 2014, 14, 10773-10784.	1.9	40
67	Average chemical properties and potential formation pathways of highly oxidized organic aerosol. Faraday Discussions, 2013, 165, 181.	1.6	46
68	OH-initiated oxidation of sub-micron unsaturated fatty acid particles. Physical Chemistry Chemical Physics, 2013, 15, 18649.	1.3	39
69	Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft. Atmospheric Chemistry and Physics, 2013, 13, 7845-7858.	1.9	36
70	Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. Environmental Chemistry, 2013, 10, 151.	0.7	103
71	Volatility and Aging of Atmospheric Organic Aerosol. Topics in Current Chemistry, 2012, 339, 97-143.	4.0	70
72	A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution. Atmospheric Chemistry and Physics, 2012, 12, 615-634.	1.9	491

#	Article	IF	CITATIONS
73	Characterisation of lightly oxidised organic aerosol formed from the photochemical aging of diesel exhaust particles. Environmental Chemistry, 2012, 9, 211.	0.7	35
74	The statistical evolution of multiple generations of oxidation products in the photochemical aging of chemically reduced organic aerosol. Physical Chemistry Chemical Physics, 2012, 14, 1468-1479.	1.3	39
75	Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry. Analytical Chemistry, 2012, 84, 2335-2342.	3.2	101
76	Transitions from Functionalization to Fragmentation Reactions of Laboratory Secondary Organic Aerosol (SOA) Generated from the OH Oxidation of Alkane Precursors. Environmental Science & Technology, 2012, 46, 5430-5437.	4.6	181
77	Mass Spectral Analysis of Organic Aerosol Formed Downwind of the Deepwater Horizon Oil Spill: Field Studies and Laboratory Confirmations. Environmental Science & Technology, 2012, 46, 8025-8034.	4.6	45
78	OH-Initiated Heterogeneous Aging of Highly Oxidized Organic Aerosol. Journal of Physical Chemistry A, 2012, 116, 6358-6365.	1.1	61
79	Evaluating the Mixing of Organic Aerosol Components Using High-Resolution Aerosol Mass Spectrometry. Environmental Science & Technology, 2011, 45, 6329-6335.	4.6	44
80	Formation of Secondary Organic Aerosol from the Direct Photolytic Generation of Organic Radicals. Journal of Physical Chemistry Letters, 2011, 2, 1295-1300.	2.1	10
81	Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. Journal of Geophysical Research, 2011, 116, .	3.3	103
82	Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. Journal of Geophysical Research, 2011, 116, .	3.3	129
83	2,3-Dimethyl-2-butene (TME) Ozonolysis: Pressure Dependence of Stabilized Criegee Intermediates and Evidence of Stabilized Vinyl Hydroperoxides. Journal of Physical Chemistry A, 2011, 115, 161-166.	1.1	51
84	Adventures in ozoneland: down the rabbit-hole. Physical Chemistry Chemical Physics, 2011, 13, 10848.	1.3	172
85	Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nature Chemistry, 2011, 3, 133-139.	6.6	890
86	Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2011, 11, 1865-1877.	1.9	162
87	Mass yields of secondary organic aerosols from the oxidation of α-pinene and real plant emissions. Atmospheric Chemistry and Physics, 2011, 11, 1367-1378.	1.9	68
88	Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston. Atmospheric Chemistry and Physics, 2010, 10, 8947-8968.	1.9	107
89	Elemental analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry. Atmospheric Measurement Techniques, 2010, 3, 301-310.	1.2	63
90	Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641.	1.9	908

#	Article	IF	CITATIONS
91	A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophysical Research Letters, 2010, 37, .	1.5	412
92	Photo-Oxidation of Low-Volatility Organics Found in Motor Vehicle Emissions: Production and Chemical Evolution of Organic Aerosol Mass. Environmental Science & Technology, 2010, 44, 1638-1643.	4.6	82
93	Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation of Erythritol and Levoglucosan. Environmental Science & amp; Technology, 2010, 44, 7005-7010.	4.6	187
94	Sampling Artifacts from Conductive Silicone Tubing. Aerosol Science and Technology, 2009, 43, 855-865.	1.5	68
95	Intermediate-Volatility Organic Compounds: A Potential Source of Ambient Oxidized Organic Aerosol. Environmental Science & Technology, 2009, 43, 4744-4749.	4.6	103
96	Mixing and phase partitioning of primary and secondary organic aerosols. Geophysical Research Letters, 2009, 36, .	1.5	50
97	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	6.0	3,374
98	Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Physical Chemistry Chemical Physics, 2009, 11, 8005.	1.3	318
99	New particle formation from the oxidation of direct emissions of pine seedlings. Atmospheric Chemistry and Physics, 2009, 9, 8121-8137.	1.9	64
100	Isoprene photooxidation: new insights into the production of acids and organic nitrates. Atmospheric Chemistry and Physics, 2009, 9, 1479-1501.	1.9	450
101	A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City. Atmospheric Chemistry and Physics, 2009, 9, 2499-2516.	1.9	75
102	The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. Atmospheric Chemistry and Physics, 2009, 9, 3209-3222.	1.9	211
103	A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmospheric Chemistry and Physics, 2009, 9, 4987-5005.	1.9	750
104	Loading-dependent elemental composition of α-pinene SOA particles. Atmospheric Chemistry and Physics, 2009, 9, 771-782.	1.9	272
105	Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmospheric Environment, 2008, 42, 3593-3624.	1.9	1,416
106	O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2008, 42, 4478-4485.	4.6	1,524
107	Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene. Atmospheric Chemistry and Physics, 2008, 8, 2073-2088.	1.9	175
108	Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways. Atmospheric Chemistry and Physics, 2008, 8, 2405-2420.	1.9	366

#	Article	IF	CITATIONS
109	Effect of NO _x level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmospheric Chemistry and Physics, 2007, 7, 5159-5174.	1.9	423
110	Secondary organic aerosol formation from <i>m</i> -xylene, toluene, and benzene. Atmospheric Chemistry and Physics, 2007, 7, 3909-3922.	1.9	720
111	Kinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products. Atmospheric Chemistry and Physics, 2007, 7, 4135-4147.	1.9	74
112	Secondary aerosol formation from atmospheric reactions of aliphatic amines. Atmospheric Chemistry and Physics, 2007, 7, 2313-2337.	1.9	308
113	Reactions of Semivolatile Organics and Their Effects on Secondary Organic Aerosol Formation. Environmental Science & Technology, 2007, 41, 3545-3550.	4.6	129
114	Evidence for Organosulfates in Secondary Organic Aerosol. Environmental Science & Technology, 2007, 41, 517-527.	4.6	591
115	Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formed from the photooxidation of isoprene using trimethylsilylation and gas chromatography/ion trap mass spectrometry. Journal of Mass Spectrometry, 2007, 42, 101-116.	0.7	125
116	Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. Journal of Geophysical Research, 2006, 111, .	3.3	332
117	Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene. Journal of Physical Chemistry A, 2006, 110, 9665-9690.	1.1	611
118	Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons. Environmental Science & Technology, 2006, 40, 2283-2297.	4.6	341
119	Secondary Organic Aerosol Formation from Isoprene Photooxidation. Environmental Science & Technology, 2006, 40, 1869-1877.	4.6	734
120	Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. Atmospheric Chemistry and Physics, 2006, 6, 2367-2388.	1.9	263
121	Representation of Secondary Organic Aerosol Laboratory Chamber Data for the Interpretation of Mechanisms of Particle Growth. Environmental Science & Technology, 2005, 39, 4159-4165.	4.6	56
122	Secondary organic aerosol formation from isoprene photooxidation under high-NOxconditions. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	297
123	Secondary Organic Aerosol Formation from Cyclohexene Ozonolysis:Â Effect of OH Scavenger and the Role of Radical Chemistry. Environmental Science & Technology, 2004, 38, 3343-3350.	4.6	94
124	Gas-Phase Ozonolysis of Alkenes:  Formation of OH from Anti Carbonyl Oxides. Journal of the American Chemical Society, 2002, 124, 8518-8519.	6.6	111
125	Mechanism of HOx Formation in the Gas-Phase Ozone-Alkene Reaction. 2. Prompt versus Thermal Dissociation of Carbonyl Oxides to Form OH. Journal of Physical Chemistry A, 2001, 105, 4446-4457.	1.1	210
126	Accurate, direct measurements of oh yields from gas-phase ozone-alkene reactions using anin situLIF Instrument. Geophysical Research Letters, 2001, 28, 3863-3866.	1.5	51

#	Article	IF	CITATIONS
127	Multiple Excited States in a Two-State Crossing Model:  Predicting Barrier Height Evolution for H + Alkene Addition Reactions. Journal of Physical Chemistry A, 2000, 104, 4458-4468.	1.1	31
128	An Experimental Method for Testing Reactivity Models:  A High-Pressure Dischargeâ^'Flow Study of H + Alkene and Haloalkene Reactions. Journal of Physical Chemistry A, 2000, 104, 5254-5264.	1.1	16
129	Direct observation of OH production from the ozonolysis of olefins. Geophysical Research Letters, 1998, 25, 59-62.	1.5	145
130	Testing Frontier Orbital Control:  Kinetics of OH with Ethane, Propane, and Cyclopropane from 180 to 360K. Journal of Physical Chemistry A, 1998, 102, 9847-9857.	1.1	60