Jesse H Kroll

List of Publications by Citations

Source: https://exaly.com/author-pdf/5399143/jesse-h-kroll-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,778 138 137 57 h-index g-index citations papers 6.48 21,565 7.1 173 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
138	Evolution of organic aerosols in the atmosphere. <i>Science</i> , 2009 , 326, 1525-9	33.3	2767
137	O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	1324
136	Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. <i>Atmospheric Environment</i> , 2008 , 42, 3593-3624	5.3	1146
135	Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4625-4641	6.8	749
134	Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. <i>Nature Chemistry</i> , 2011 , 3, 133-9	17.6	689
133	Secondary organic aerosol formation from isoprene photooxidation. <i>Environmental Science & Environmental Science & Technology</i> , 2006 , 40, 1869-77	10.3	630
132	A review of Secondary Organic Aerosol (SOA) formation from isoprene. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4987-5005	6.8	626
131	Secondary organic aerosol formation from <i>m</i>-xylene, toluene, and benzene. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 3909-3922	6.8	580
130	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 253-272	6.8	563
129	Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 9665-90	2.8	533
128	Evidence for organosulfates in secondary organic aerosol. <i>Environmental Science & Environmental Scien</i>	10.3	508
127	Isoprene photooxidation: new insights into the production of acids and organic nitrates. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1479-1501	6.8	391
126	A two-dimensional volatility basis set IPart 2: Diagnostics of organic-aerosol evolution. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 615-634	6.8	365
125	A simplified description of the evolution of organic aerosol composition in the atmosphere. <i>Geophysical Research Letters</i> , 2010 , 37,	4.9	352
124	Effect of NO_x level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 5159-5174	6.8	340
123	Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2405-2420	6.8	312
122	Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	302

121	Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. <i>Journal of Geophysical Research</i> , 2006 , 111,		280
120	Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 8005-14	3.6	277
119	Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	269
118	Secondary aerosol formation from atmospheric reactions of aliphatic amines. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 2313-2337	6.8	254
117	Loading-dependent elemental composition of Epinene SOA particles. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 771-782	6.8	230
116	Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2367-2388	6.8	217
115	Mechanism of HOx Formation in the Gas-Phase Ozone-Alkene Reaction. 2. Prompt versus Thermal Dissociation of Carbonyl Oxides to Form OH. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 4446-4457	2.8	192
114	The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3209-3222	6.8	182
113	Chemical sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan. <i>Environmental Science & Environmental Science & Envir</i>	10.3	163
112	Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of pinene. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2073-2088	6.8	149
111	Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors. <i>Environmental Science & Environmental Science & Environment</i>	10.3	147
110	Adventures in ozoneland: down the rabbit-hole. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 10848-57	' 3.6	145
109	Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 3063-3075	6.8	134
108	Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1865-1877	6.8	134
107	Direct observation of OH production from the ozonolysis of olefins. <i>Geophysical Research Letters</i> , 1998 , 25, 59-62	4.9	132
106	Contrasting the direct radiative effect and direct radiative forcing of aerosols. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5513-5527	6.8	131
105	Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. <i>Journal of Geophysical Research</i> , 2011 , 116,		117
104	Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formed from the photooxidation of isoprene using trimethylsilylation and gas chromatography/ion trap mass spectrometry. 2007, 42, 101-16	2.2	112

103	Reactions of semivolatile organics and their effects on secondary organic aerosol formation. <i>Environmental Science & Environmental Science & Environm</i>	10.3	106
102	Gas-phase ozonolysis of alkenes: formation of OH from anti carbonyl oxides. <i>Journal of the American Chemical Society</i> , 2002 , 124, 8518-9	16.4	100
101	In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2943-2970	6.8	98
100	Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 10767-83	2.8	94
99	Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using gas chromatography-vacuum ultraviolet-mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 2335-	4 2 ⁸	92
98	Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. <i>Journal of Geophysical Research</i> , 2011 , 116,		90
97	Phase partitioning and volatility of secondary organic aerosol components formed from pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7765-7776	6.8	88
96	Intermediate-volatility organic compounds: a potential source of ambient oxidized organic aerosol. <i>Environmental Science & Environmental Science & En</i>	10.3	88
95	Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. <i>Environmental Chemistry</i> , 2013 , 10, 151	3.2	85
94	The complex chemical effects of COVID-19 shutdowns on air quality. <i>Nature Chemistry</i> , 2020 , 12, 777-77	79 7.6	83
93	Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8947-8968	6.8	80
92	Secondary organic aerosol formation from cyclohexene ozonolysis: effect of OH scavenger and the role of radical chemistry. <i>Environmental Science & Environmental Science & En</i>	10.3	80
91	Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	71
90	Kinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 4135-4147	6.8	66
89	Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 315-328	4	66
88	Formation of Low-Volatility Organic Compounds in the Atmosphere: Recent Advancements and Insights. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1503-1511	6.4	61
87	A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 2499-2516	6.8	61
86	New particle formation from the oxidation of direct emissions of pine seedlings. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 8121-8137	6.8	59

(2011-2018)

85	Chemical evolution of atmospheric organic carbon over multiple generations of oxidation. <i>Nature Chemistry</i> , 2018 , 10, 462-468	17.6	58
84	Mass yields of secondary organic aerosols from the oxidation of ⊕inene and real plant emissions. Atmospheric Chemistry and Physics, 2011 , 11, 1367-1378	6.8	58
83	Sampling Artifacts from Conductive Silicone Tubing. <i>Aerosol Science and Technology</i> , 2009 , 43, 855-865	3.4	58
82	Testing Frontier Orbital Control: Kinetics of OH with Ethane, Propane, and Cyclopropane from 180 to 360K. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 9847-9857	2.8	57
81	Volatility and aging of atmospheric organic aerosol. <i>Topics in Current Chemistry</i> , 2014 , 339, 97-143		56
80	The Essential Role for Laboratory Studies in Atmospheric Chemistry. <i>Environmental Science & Technology</i> , 2017 , 51, 2519-2528	10.3	55
79	Representation of secondary organic aerosol laboratory chamber data for the interpretation of mechanisms of particle growth. <i>Environmental Science & Environmental Science & </i>	10.3	54
78	Comprehensive characterization of atmospheric organic carbon at a forested site. <i>Nature Geoscience</i> , 2017 , 10, 748-753	18.3	49
77	OH-initiated heterogeneous aging of highly oxidized organic aerosol. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 6358-65	2.8	49
76	Elemental analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2010 , 3, 301-310	4	49
75	2,3-Dimethyl-2-butene (TME) ozonolysis: pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 161-6	2.8	48
74	Causes and consequences of decreasing atmospheric organic aerosol in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 290-295	11.5	45
73	Mixing and phase partitioning of primary and secondary organic aerosols. <i>Geophysical Research Letters</i> , 2009 , 36, n/a-n/a	4.9	45
72	Accurate, direct measurements of oh yields from gas-phase ozone-alkene reactions using an in situ LIF Instrument. <i>Geophysical Research Letters</i> , 2001 , 28, 3863-3866	4.9	45
71	OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14875-14899	6.8	45
70	Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12797-12809	6.8	43
69	Secondary organic aerosol formation from acyclic, monocyclic, and polycyclic alkanes. <i>Environmental Science & Environmental S</i>	10.3	41
68	Evaluating the mixing of organic aerosol components using high-resolution aerosol mass spectrometry. <i>Environmental Science & Environmental Enviro</i>	10.3	41

67	Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 4589-99	2.8	39
66	Joint Impacts of Acidity and Viscosity on the Formation of Secondary Organic Aerosol from Isoprene Epoxydiols (IEPOX) in Phase Separated Particles. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2646	5- 2:6 58	38
65	Mass spectral analysis of organic aerosol formed downwind of the Deepwater Horizon oil spill: field studies and laboratory confirmations. <i>Environmental Science & Environmental Science & Environment</i>	10.3	38
64	The statistical evolution of multiple generations of oxidation products in the photochemical aging of chemically reduced organic aerosol. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 1468-79	3.6	35
63	Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol. <i>Aerosol Science and Technology</i> , 2019 , 53, 663-674	3.4	33
62	Biomass-burning-derived particles from a wide variety of fuels Part 1: Properties of primary particles. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1531-1547	6.8	33
61	Average chemical properties and potential formation pathways of highly oxidized organic aerosol. <i>Faraday Discussions</i> , 2013 , 165, 181-202	3.6	33
60	Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10773-10784	6.8	32
59	OH-initiated oxidation of sub-micron unsaturated fatty acid particles. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 18649-63	3.6	30
58	Multiple Excited States in a Two-State Crossing Model: Predicting Barrier Height Evolution for H + Alkene Addition Reactions. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 4458-4468	2.8	30
57	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	29
56	Changes to the chemical composition of soot from heterogeneous oxidation reactions. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 1154-63	2.8	29
55	Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: current capabilities and remaining gaps. <i>Faraday Discussions</i> , 2017 , 200, 579-598	3.6	28
54	Characterisation of lightly oxidised organic aerosol formed from the photochemical aging of diesel exhaust particles. <i>Environmental Chemistry</i> , 2012 , 9, 211	3.2	27
53	Influence of molecular structure and chemical functionality on the heterogeneous OH-initiated oxidation of unsaturated organic particles. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 4106-19	2.8	26
52	Atmospheric evolution of sulfur emissions from Klauea: real-time measurements of oxidation, dilution, and neutralization within a volcanic plume. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 4129-37	10.3	25
51	Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine. <i>Environmental Science & Environmental Science</i>	10.3	25
50	The fuel of atmospheric chemistry: Toward a complete description of reactive organic carbon. <i>Science Advances</i> , 2020 , 6, eaay8967	14.3	25

49	Biomass-burning-derived particles from a wide variety of fuels Part 2: Effects of photochemical aging on particle optical and chemical properties. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8511-85	32 .8	24	
48	Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7845-7858	6.8	23	
47	Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 15117-15129	6.8	23	
46	Effects of Condensed-Phase Oxidants on Secondary Organic Aerosol Formation. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 1386-94	2.8	22	
45	Photolytic Aging of Secondary Organic Aerosol: Evidence for a Substantial Photo-Recalcitrant Fraction. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4003-4009	6.4	22	
44	Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 6343-6355	4	22	
43	A biogenic secondary organic aerosol source of cirrus ice nucleating particles. <i>Nature Communications</i> , 2020 , 11, 4834	17.4	19	
42	Using collision-induced dissociation to constrain sensitivity of ammonia chemical ionization mass spectrometry (CIMS) to oxygenated volatile organic compounds. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 1861-1870	4	17	
41	Rapid heterogeneous oxidation of organic coatings on submicron aerosols. <i>Geophysical Research Letters</i> , 2017 , 44, 2949-2957	4.9	16	
40	Chemical Characterization of Isoprene- and Monoterpene-Derived Secondary Organic Aerosol Tracers in Remote Marine Aerosols over a Quarter Century. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 935	5- 3 ·46	16	
39	An Experimental Method for Testing Reactivity Models: A High-Pressure Discharge Flow Study of H + Alkene and Haloalkene Reactions. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 5254-5264	2.8	16	
38	Laboratory Investigation of Renoxification from the Photolysis of Inorganic Particulate Nitrate. <i>Environmental Science & Environmental Science & Envi</i>	10.3	16	
37	Secondary organic aerosol formation via the isolation of individual reactive intermediates: role of alkoxy radical structure. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 8807-16	2.8	14	
36	Inferring Aerosol Sources from Low-Cost Air Quality Sensor Measurements: A Case Study in Delhi, India. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 467-472	11	12	
35	Measurement techniques for identifying and quantifying hydroxymethanesulfonate (HMS) in an aqueous matrix and particulate matter using aerosol mass spectrometry and ion chromatography. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 5303-5315	4	12	
34	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications		12	
33	Infrared Ion Spectroscopy of Environmental Organic Mixtures: Probing the Composition of Pinene Secondary Organic Aerosol. <i>Environmental Science & Environmental Science & Env</i>	10.3	11	
32	Ultrasonic nebulization for the elemental analysis of microgram-level samples with offline aerosol mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 1659-1671	4	10	

31	Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1021-1041	6.8	10
30	Evolution in the Reactivity of Citric Acid toward Heterogeneous Oxidation by Gas-Phase OH Radicals. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 1323-1329	3.2	10
29	Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 12433-12460	6.8	10
28	Formation of Secondary Organic Aerosol from the Direct Photolytic Generation of Organic Radicals. Journal of Physical Chemistry Letters, 2011 , 2, 1295-300	6.4	9
27	Radical Reactivity in the Condensed Phase: Intermolecular versus Intramolecular Reactions of Alkoxy Radicals. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2388-92	6.4	6
26	Phase partitioning and volatility of secondary organic aerosol components formed from pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds		6
25	Organic Sulfur Products and Peroxy Radical Isomerization in the OH Oxidation of Dimethyl Sulfide. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 2013-2020	3.2	6
24	Investigating Carbonaceous Aerosol and Its Absorption Properties From Fires in the Western United States (WE-CAN) and Southern Africa (ORACLES and CLARIFY). <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD034984	4.4	6
23	Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 1549-1573	6.8	5
22	In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reacto	г	4
21	Assessing the accuracy of low-cost optical particle sensors using a physics-based approach		4
20	Global Cancer Risk From Unregulated Polycyclic Aromatic Hydrocarbons. <i>GeoHealth</i> , 2021 , 5, e2021GH0	090401	4
19	OH-chemistry of non-methane organic gases (NMOG) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation 2019 ,		3
18	Pressure-dependent kinetics of peroxy radicals formed in isobutanol combustion. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 19802-19815	3.6	3
17	Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments 2019 ,		2
16	Secondary organic aerosol formation from biomass burning emissions 2019,		2
15	Beyond direct radiative forcing: the case for characterizing the direct radiative effect of aerosols		2
14	Calibration and assessment of electrochemical air quality sensors by co-location with reference-grade instruments		2

LIST OF PUBLICATIONS

13	Influence of the NO/NO Ratio on Oxidation Product Distributions under High-NO Conditions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	2
12	Screening for New Pathways in Atmospheric Oxidation Chemistry with Automated Mechanism Generation. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 6772-6788	2.8	2
11	Biomass-burning-derived particles from a wide variety of fuels: Part 2: Effects of photochemical aging on particle optical and chemical properties 2020 ,		1
10	Biomass-burning derived particles from a wide variety of fuels: Part 1: Properties of primary particles 2019 ,		1
9	A radical shift in air pollution. <i>Science</i> , 2021 , 374, 688-689	33.3	1
8	Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solu	ution	1
7	Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield		1
6	Real-Time Laboratory Measurements of VOC Emissions, Removal Rates, and Byproduct Formation from Consumer-Grade Oxidation-Based Air Cleaners. <i>Environmental Science and Technology Letters</i> ,	11	1
5	Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 2501-2513	4	1
4	Mapping pollution exposure and chemistry during an extreme air quality event (the 2018 Kauea eruption) using a low-cost sensor network. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
3	Chemistry of Functionalized Reactive Organic Intermediates in the Earth® Atmosphere: Impact, Challenges, and Progress. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 10264-10279	2.8	O
2	Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NO Level. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 10303-10314	2.8	О
1	The Parallel Transformations of Polycyclic Aromatic Hydrocarbons in the Body and in the	8.4	0