## Fengxian Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5398866/publications.pdf Version: 2024-02-01



FENCYIAN XIE

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stability of electroluminescent perovskite quantum dots lightâ€emitting diode. Nano Select, 2022, 3,<br>505-530.                                                                                                                  | 3.7  | 10        |
| 2  | Recent Advances in Blue Perovskite Quantum Dots for Lightâ€Emitting Diodes. Small, 2022, 18, e2103527.                                                                                                                            | 10.0 | 43        |
| 3  | Synthesis and structure design of l–Ill–VI quantum dots for white light-emitting diodes. Materials<br>Chemistry Frontiers, 2022, 6, 418-429.                                                                                      | 5.9  | 18        |
| 4  | Organic Light-Emitting Diodes Array With High-Luminance Stability and Low-Lateral Leakage by<br>Hybridized Plasma Treatments. IEEE Transactions on Electron Devices, 2022, 69, 1107-1114.                                         | 3.0  | 2         |
| 5  | Simple Structural Descriptor Obtained from Symbolic Classification for Predicting the Oxygen<br>Vacancy Defect Formation of Perovskites. ACS Applied Materials & Interfaces, 2022, 14, 11758-11767.                               | 8.0  | 9         |
| 6  | Synergistic Effect of Halogen Ions and Shelling Temperature on Anion Exchange Induced Interfacial<br>Restructuring for Highly Efficient Blue Emissive InP/ZnS Quantum Dots. Small, 2022, 18, e2108120.                            | 10.0 | 23        |
| 7  | Eliminating hysteresis effects in flexible organic light-emitting diodes. Organic Electronics, 2022, 103, 106467.                                                                                                                 | 2.6  | 2         |
| 8  | Discovery of Leadâ€Free Perovskites for Highâ€Performance Solar Cells via Machine Learning:<br>Ultrabroadband Absorption, Low Radiative Combination, and Enhanced Thermal Conductivities.<br>Advanced Science, 2022, 9, e2103648. | 11.2 | 35        |
| 9  | Exploring novel ligands with strong electron delocalization for high-performance blue<br>CsPbBr <sub>3</sub> perovskite nanoplatelets. Journal of Materials Chemistry C, 2022, 10, 9834-9840.                                     | 5.5  | 12        |
| 10 | A Review of Modification Methods of Solid Electrolytes for Allâ€Solidâ€State Sodiumâ€Ion Batteries.<br>Energy Technology, 2021, 9, 2000682.                                                                                       | 3.8  | 19        |
| 11 | Highly luminescent copper gallium selenium based multicomponent quantum dots: Formation process and tunable white-light emission. Applied Surface Science, 2021, 538, 147907.                                                     | 6.1  | 21        |
| 12 | Gadolinium-doped carbon dots with high-performance in dual-modal molecular imaging. Analytical<br>Methods, 2021, 13, 2442-2449.                                                                                                   | 2.7  | 20        |
| 13 | Novel Solid-State Sodium-Ion Battery with Wide Band Gap<br>NaTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> Nanocrystal Electrolyte. ACS Omega, 2021, 6,<br>11537-11544.                                                         | 3.5  | 1         |
| 14 | Design and Mechanism of a Selfâ€Powered and Disintegration–Reorganization–Regeneration Power<br>Supply with Cold Resistance. Advanced Materials, 2021, 33, e2101239.                                                              | 21.0 | 2         |
| 15 | Rapid large-scale synthesis of highly emissive solid-state metal halide perovskite quantum dots across<br>the full visible spectrum. Optics and Laser Technology, 2021, 143, 107369.                                              | 4.6  | 13        |
| 16 | Emission tuning of highly efficient quaternary Ag-Cu-Ga-Se/ZnSe quantum dots for white<br>light-emitting diodes. Journal of Colloid and Interface Science, 2021, 602, 307-315.                                                    | 9.4  | 22        |
| 17 | One-step synthesis of high-quality vanadium disulfide quantum dots for long-term<br>lysosome-targetable imaging. Sensors and Actuators B: Chemical, 2021, 346, 130544.                                                            | 7.8  | 4         |
| 18 | Highly efficient Mn-doped CsPb(Br/Cl)3 mixed-halide perovskite via a simple large-scale synthesis<br>method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021,<br>273, 115426.            | 3.5  | 12        |

FENGXIAN XIE

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Investigating the Electrochemical Performance of Smart Selfâ€Powered Bionic Skin Fragment Based on<br>Bioelectricity Generation. Advanced Materials Technologies, 2021, 6, 2000848.                              | 5.8  | 5         |
| 20 | Thioacetamide-ligand-mediated synthesis of CsPbBr <sub>3</sub> –CsPbBr <sub>3</sub><br>homostructured nanocrystals with enhanced stability. Journal of Materials Chemistry C, 2021, 9,<br>11349-11357.           | 5.5  | 31        |
| 21 | Role of organic cation orientation in formamidine based perovskite materials. Scientific Reports, 2021, 11, 20433.                                                                                               | 3.3  | 11        |
| 22 | Cation Crosslinking-Induced Stable Copper Nanoclusters Powder as Latent Fingerprints Marker.<br>Nanomaterials, 2021, 11, 3371.                                                                                   | 4.1  | 1         |
| 23 | Dual-emission of silicon nanoparticles encapsulated lanthanide-based metal-organic frameworks for ratiometric fluorescence detection of bacterial spores. Mikrochimica Acta, 2020, 187, 666.                     | 5.0  | 25        |
| 24 | Optical and Morphological Properties of Single-Phased and Dual-Emissive InP/ZnS Quantum Dots via<br>Transition Metallic and Inorganic Ions. Langmuir, 2020, 36, 10244-10250.                                     | 3.5  | 15        |
| 25 | Spectrum projection with a bandgap-gradient perovskite cell for colour perception. Light: Science and Applications, 2020, 9, 162.                                                                                | 16.6 | 32        |
| 26 | 49.25% efficient cyan emissive sulfur dots <i>via</i> a microwave-assisted route. RSC Advances, 2020, 10, 17266-17269.                                                                                           | 3.6  | 32        |
| 27 | An effective optics-electrochemistry approach to random packing density of non-equiaxed ellipsoids.<br>Materialia, 2020, 12, 100750.                                                                             | 2.7  | 1         |
| 28 | Highly luminescent water-soluble AgInS2/ZnS quantum dots-hydrogel composites for warm white<br>LEDs. Journal of Alloys and Compounds, 2020, 824, 153896.                                                         | 5.5  | 52        |
| 29 | Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application. Applied Surface Science, 2020, 512, 145655. | 6.1  | 65        |
| 30 | Narrow band-gap cathode Fe3(PO4)2 for sodium-ion battery with enhanced sodium storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124561.                                      | 4.7  | 22        |
| 31 | Surface States Induced Photoluminescence Enhancement of Nitrogen-Doped Carbon Dots Via<br>Post-Treatments. Nanoscale Research Letters, 2019, 14, 172.                                                            | 5.7  | 40        |
| 32 | Enhanced tunable dual emission of Cu:InP/ZnS quantum dots enabled by introducing Ag ions. Applied Surface Science, 2019, 493, 605-612.                                                                           | 6.1  | 20        |
| 33 | Facile Synthesis and Optical Properties of CsPbX3/ZIF-8 Composites for Wide-Color-Gamut Display.<br>Nanomaterials, 2019, 9, 832.                                                                                 | 4.1  | 38        |
| 34 | Color-tunable optical properties of cadmium-free transition metal ions doped InP/ZnS quantum dots.<br>Journal of Luminescence, 2019, 212, 264-270.                                                               | 3.1  | 29        |
| 35 | Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with COOH Functional<br>Group. Advanced Energy Materials, 2018, 8, 1800715.                                                           | 19.5 | 187       |
| 36 | Improving the Performance of Inverted Formamidinium Tin Iodide Perovskite Solar Cells by Reducing the Energy-Level Mismatch. ACS Energy Letters, 2018, 3, 1116-1121.                                             | 17.4 | 105       |

FENGXIAN XIE

| #  | Article                                                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Control of Electrical Potential Distribution for High-Performance Perovskite Solar Cells. Joule, 2018, 2, 296-306.                                                                                                                                                                                                             | 24.0 | 138       |
| 38 | A comparative study of 0,p-dimethoxyphenyl-based hole transport materials by altering π-linker units<br>for highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5,<br>10480-10485.                                                                                                     | 10.3 | 60        |
| 39 | Thermally Stable MAPbI <sub>3</sub> Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm <sup>2</sup> achieved by Additive Engineering. Advanced Materials, 2017, 29, 1701073.                                                                                                                                  | 21.0 | 541       |
| 40 | Accurate and fast evaluation of perovskite solar cells with least hysteresis. Applied Physics Express, 2017, 10, 076601.                                                                                                                                                                                                       | 2.4  | 12        |
| 41 | Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nature<br>Communications, 2017, 8, 15330.                                                                                                                                                                                       | 12.8 | 356       |
| 42 | Stable Inverted Planar Perovskite Solar Cells with Lowâ€Temperatureâ€Processed Holeâ€Transport Bilayer.<br>Advanced Energy Materials, 2017, 7, 1700763.                                                                                                                                                                        | 19.5 | 115       |
| 43 | A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 550, 92-95.                                                                                                                                                                                                         | 27.8 | 618       |
| 44 | Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy and Environmental Science, 2017, 10, 1942-1949.                                                                                                                                               | 30.8 | 402       |
| 45 | Lowâ€Temperature Softâ€Cover Deposition of Uniform Largeâ€Scale Perovskite Films for Highâ€Performance<br>Solar Cells. Advanced Materials, 2017, 29, 1701440.                                                                                                                                                                  | 21.0 | 74        |
| 46 | Annealing-free perovskite films by instant crystallization for efficient solar cells. Journal of<br>Materials Chemistry A, 2016, 4, 8548-8553.                                                                                                                                                                                 | 10.3 | 103       |
| 47 | Enhanced Stability of Perovskite Solar Cells through Corrosionâ€Free Pyridine Derivatives in<br>Holeâ€Transporting Materials. Advanced Materials, 2016, 28, 10738-10743.                                                                                                                                                       | 21.0 | 147       |
| 48 | Perovskite solar cells with 18.21% efficiency andÂarea over 1 cm2 fabricated by heterojunctionÂengineering. Nature Energy, 2016, 1, .                                                                                                                                                                                          | 39.5 | 555       |
| 49 | Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy and Environmental Science, 2016, 9, 2295-2301.                                                                                                                                                                 | 30.8 | 173       |
| 50 | A Smooth CH <sub>3</sub> NH <sub>3</sub> Pbl <sub>3</sub> Film via a New Approach for Forming the<br>Pbl <sub>2</sub> Nanostructure Together with Strategically High CH <sub>3</sub> NH <sub>3</sub> I<br>Concentration for High Efficient Planarâ€Heterojunction Solar Cells. Advanced Energy Materials, 2015,<br>5, 1501354. | 19.5 | 228       |
| 51 | A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic<br>Solar Cells. Advanced Energy Materials, 2015, 5, 1500631.                                                                                                                                                                  | 19.5 | 37        |
| 52 | MoOx and V2Ox as hole and electron transport layers through functionalized intercalation in normal and inverted organic optoelectronic devices. Light: Science and Applications, 2015, 4, e273-e273.                                                                                                                           | 16.6 | 169       |
| 53 | Highâ€Performance Organic Solar Cells with Broadband Absorption Enhancement and Reliable<br>Reproducibility Enabled by Collective Plasmonic Effects. Advanced Optical Materials, 2015, 3, 1220-1231.                                                                                                                           | 7.3  | 66        |
| 54 | Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells. Journal of Materials Chemistry A, 2015, 3, 23955-23963.                                                                                                                                                             | 10.3 | 40        |

FENGXIAN XIE

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Smooth CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> from controlled solid–gas reaction for photovoltaic applications. RSC Advances, 2015, 5, 73760-73766.                                                               | 3.6  | 17        |
| 56 | Over 1.1 eV Workfunction Tuning of Cesium Intercalated Metal Oxides for Functioning as Both<br>Electron and Hole Transport Layers in Organic Optoelectronic Devices. Advanced Functional<br>Materials, 2014, 24, 7348-7356. | 14.9 | 44        |
| 57 | Functions of Self-Assembled Ultrafine TiO <sub>2</sub> Nanocrystals for High Efficient Dye-Sensitized<br>Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5367-5373.                                               | 8.0  | 18        |
| 58 | Lowâ€Temperature Solutionâ€Processed Hydrogen Molybdenum and Vanadium Bronzes for an Efficient<br>Holeâ€Transport Layer in Organic Electronics. Advanced Materials, 2013, 25, 2051-2055.                                    | 21.0 | 269       |
| 59 | Plasmonic Electrically Functionalized TiO <sub>2</sub> for Highâ€Performance Organic Solar Cells.<br>Advanced Functional Materials, 2013, 23, 4255-4261.                                                                    | 14.9 | 138       |
| 60 | Al-TiO <sub>2</sub> Composite-Modified Single-Layer Graphene as an Efficient Transparent Cathode for<br>Organic Solar Cells. ACS Nano, 2013, 7, 1740-1747.                                                                  | 14.6 | 90        |
| 61 | Room-temperature solution-processed molybdenum oxide as a hole transport layer with Ag<br>nanoparticles for highly efficient inverted organic solar cells. Journal of Materials Chemistry A, 2013,<br>1, 6614.              | 10.3 | 89        |
| 62 | Broadband enhancement of spontaneous emission in a photonic-plasmonic structure. Optics Letters, 2012, 37, 2037.                                                                                                            | 3.3  | 17        |
| 63 | Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells. Advanced<br>Materials, 2012, 24, 3046-3052.                                                                                                | 21.0 | 654       |
| 64 | Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. Journal of Materials Chemistry, 2011, 21, 16349.                                                   | 6.7  | 259       |