Daniel Arribas-Bel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5398524/publications.pdf Version: 2024-02-01

DANIEL ADDIRAS-REL

#	Article	IF	CITATIONS
1	Accidental, open and everywhere: Emerging data sources for the understanding of cities. Applied Geography, 2014, 49, 45-53.	1.7	148
2	Spatial fixed effects and spatial dependence in a single crossâ€section. Papers in Regional Science, 2013, 92, 3-18.	1.0	141
3	Key questions for modelling COVID-19 exit strategies. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201405.	1.2	106
4	The validity of the monocentric city model in a polycentric age: US metropolitan areas in 1990, 2000 and 2010. Urban Geography, 2014, 35, 980-997.	1.7	104
5	Spatial Variation in the Quality of American Community Survey Estimates. Demography, 2016, 53, 1535-1554.	1.2	78
6	A Hierarchical Urban Forest Index Using Street-Level Imagery and Deep Learning. Remote Sensing, 2019, 11, 1395.	1.8	49
7	Benchmarking of world cities through Self-Organizing Maps. Cities, 2013, 31, 248-257.	2.7	48
8	Geographic Data Science. Geographical Analysis, 2021, 53, 61-75.	1.9	48
9	Cyber Cities: Social Media as a Tool for Understanding Cities. Applied Spatial Analysis and Policy, 2015, 8, 231-247.	1.0	38
10	Building(s and) cities: Delineating urban areas with a machine learning algorithm. Journal of Urban Economics, 2021, 125, 103217.	2.4	37
11	Understanding the dynamics of urban areas of interest through volunteered geographic information. Journal of Geographical Systems, 2019, 21, 89-109.	1.9	31
12	Machine learning innovations in address matching: A practical comparison of word2vec and CRFs. Transactions in GIS, 2019, 23, 334-348.	1.0	30
13	A Principal Component Analysis (PCA)-based framework for automated variable selection in geodemographic classification. Geo-Spatial Information Science, 2019, 22, 251-264.	2.4	28
14	Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning. PLoS ONE, 2017, 12, e0176684.	1.1	27
15	A geographic data science framework for the functional and contextual analysis of human dynamics within global cities. Computers, Environment and Urban Systems, 2021, 85, 101539.	3.3	27
16	Self-Organizing Maps and the US Urban Spatial Structure. Environment and Planning B: Planning and Design, 2013, 40, 362-371.	1.7	26
17	Geography and computers: Past, present, and future. Geography Compass, 2018, 12, e12403.	1.5	25
18	Open data products-A framework for creating valuable analysis ready data. Journal of Geographical Systems, 2021, 23, 497-514.	1.9	24

DANIEL ARRIBAS-BEL

#	Article	IF	CITATIONS
19	Considering context and dynamics: A classification of transit-orientated development for New York City. Journal of Transport Geography, 2020, 85, 102711.	2.3	22
20	Identifying and understanding road-constrained areas of interest (AOIs) through spatiotemporal taxi GPS data: A case study in New York City. Computers, Environment and Urban Systems, 2021, 86, 101592.	3.3	21
21	The PySAL Ecosystem: Philosophy and Implementation. Geographical Analysis, 2022, 54, 467-487.	1.9	21
22	More bark than bytes? Reflections on 21+ years of geocomputation. Environment and Planning B: Urban Analytics and City Science, 2017, 44, 598-617.	1.0	20
23	Use and validation of location-based services in urban research: An example with Dutch restaurants. Urban Studies, 2019, 56, 868-884.	2.2	19
24	Sustainable urban development indicators in Great Britain from 2001 to 2016. Landscape and Urban Planning, 2021, 214, 104148.	3.4	19
25	Quantifying the Characteristics of the Local Urban Environment through Geotagged Flickr Photographs and Image Recognition. ISPRS International Journal of Geo-Information, 2020, 9, 264.	1.4	18
26	Inferring neighbourhood quality with property transaction records by using a locally adaptive spatial multi-level model. Computers, Environment and Urban Systems, 2019, 73, 118-125.	3.3	17
27	Testing for spatial error dependence in probit models. Letters in Spatial and Resource Sciences, 2013, 6, 91-101.	1.2	15
28	Who Counts? Gender, Gatekeeping, and Quantitative Human Geography. Professional Geographer, 2021, 73, 48-61.	1.0	15
29	The Size Distribution of Employment Centers within the US Metropolitan Areas. Environment and Planning B: Planning and Design, 2015, 42, 23-39.	1.7	14
30	Concrete agglomeration benefits: do roads improve urban connections or just attract more people?. Regional Studies, 2018, 52, 1134-1149.	2.5	14
31	Trajectories of neighbourhood inequality in Britain: Unpacking interâ€regional socioeconomic imbalances, 1971â~'2011. Geographical Journal, 2022, 188, 150-165.	1.6	14
32	Characterizing the Spatial Structure(s) of Cities "on the fly― The Spaceâ€Time Calendar. Geographical Analysis, 2018, 50, 162-181.	1.9	13
33	"Waiting on the train― The anticipatory (causal) effects of Crossrail in Ealing. Journal of Transport Geography, 2017, 64, 13-22.	2.3	11
34	Stochastic Efficiency of Bayesian Markov Chain Monte Carlo in Spatial Econometric Models: An Empirical Comparison of Exact Sampling Methods. Geographical Analysis, 2018, 50, 97-119.	1.9	11
35	A course on Geographic Data Science. The Journal of Open Source Education, 2019, 2, 42.	0.2	11
36	Assessing the value of user-generated images of urban surroundings for house price estimation. Landscape and Urban Planning, 2022, 226, 104486.	3.4	10

DANIEL ARRIBAS-BEL

#	Article	IF	CITATIONS
37	Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network. Computers, Environment and Urban Systems, 2022, 95, 101802.	3.3	8
38	High performers in complex spatial systems: a self-organizing mapping approach with reference to The Netherlands. Annals of Regional Science, 2012, 48, 501-527.	1.0	7
39	Migrant Entrepreneurs as Urban â€~Health Angels' — Contrasts in Growth Strategies. International Planning Studies, 2015, 20, 71-86.	1.2	7
40	Classification and Regression via Integer Optimization for Neighborhood Change. Geographical Analysis, 2021, 53, 192-212.	1.9	7
41	Using convolutional autoencoders to extract visual features of leisure and retail environments. Landscape and Urban Planning, 2020, 202, 103887.	3.4	6
42	The spoken postcodes. Regional Studies, Regional Science, 2015, 2, 458-461.	0.7	5
43	How diverse can measures of segregation be? Results from Monte Carlo simulations of an agent-based model. Environment and Planning A, 2016, 48, 2046-2066.	2.1	5
44	Building Hierarchies of Retail Centers Using Bayesian Multilevel Models. Annals of the American Association of Geographers, 2020, 110, 1150-1173.	1.5	5
45	On Spatial and Platial Dependence: Examining Shrinkage in Spatially Dependent Multilevel Models. Annals of the American Association of Geographers, 0, , 1-13.	1.5	5
46	From manufacturing belt, to rust belt, to college country: a visual narrative of US urban growth. Environment and Planning A, 2015, 47, 1241-1253.	2.1	4
47	Looking at John Snow's Cholera Map from the Twenty First Century: A Practical Primer on Reproducibility and Open Science. Advances in Spatial Science, 2017, , 283-306.	0.3	4
48	Big Urban Data: Challenges and Opportunities for Geographical Analysis. Geographical Analysis, 2018, 50, 123-124.	1.9	4
49	How sensitive is city size distribution to the definition of city? The case of Spain. Economics Letters, 2020, 197, 109643.	0.9	4
50	The Potential of Notebooks for Scientific Publication, Reproducibility and Dissemination. Region, 2020, 7, E1-E5.	0.3	4
51	Spatial dynamics of cultural diversity in the Netherlands. Environment and Planning B: Urban Analytics and City Science, 2018, 45, 1142-1156.	1.0	3
52	Functional signatures in Great Britain: A dataset. Data in Brief, 2022, 43, 108335.	0.5	3
53	Featured Graphic. Monocentricity? Commuting Flows Visually. Environment and Planning A, 2012, 44, 2041-2042.	2.1	2
54	Improving the multi-dimensional comparison of simulation results: a spatial visualization approach. Letters in Spatial and Resource Sciences, 2012, 5, 55-63.	1.2	2

#	Article	IF	CITATIONS
55	WooW-II: Workshop on open workflows. Region, 2015, 2, R1-R2.	0.3	2
56	splot - visual analytics for spatial statistics. Journal of Open Source Software, 2020, 5, 1882.	2.0	2
57	A reproducible notebook to acquire, process and analyse satellite imagery. Region, 2020, 7, R15-R46.	0.3	2
58	GIS and Computational Notebooks. Geographic Information Science & Technology Body of Knowledge, 2021, 2021, .	0.1	0