Freni Tavaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5398290/publications.pdf Version: 2024-02-01

FDENI TAVADIA

#	Article	IF	CITATIONS
1	Image Analysis Semi-Automatic System for Colony-Forming-Unit Counting. Bioengineering, 2022, 9, 271.	1.6	5
2	Organoleptic Chemical Markers of Serpa PDO Cheese Specificity. Foods, 2022, 11, 1898.	1.9	2
3	Technological and protective performance of LAB isolated from Serpa PDO cheese: Towards selection and development of an autochthonous starter culture. LWT - Food Science and Technology, 2021, 150, 112079.	2.5	10
4	A review on microbiological and technological aspects of Serpa PDO cheese: An ovine raw milk cheese. International Dairy Journal, 2020, 100, 104561.	1.5	19
5	Conventional and natural compounds for the treatment of dermatophytosis. Medical Mycology, 2020, 58, 707-720.	0.3	11
6	Chitosan impregnated gutta-percha points: antimicrobial <i>in vitro</i> evaluation and mechanical properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 481-488.	1.8	4
7	Exploring chitosan nanoparticles as effective inhibitors of antibiotic resistant skin microorganisms – From in vitro to ex vitro testing. Carbohydrate Polymers, 2018, 201, 340-346.	5.1	14
8	Chitosan's biological activity upon skin-related microorganisms and its potential textile applications. World Journal of Microbiology and Biotechnology, 2018, 34, 93.	1.7	11
9	A review of chitosan's effect on oral biofilms: Perspectives from the tube to the mouth. Journal of Oral Biosciences, 2017, 59, 205-210.	0.8	23
10	Investigation of chitosan's antibacterial activity against vancomycin resistant microorganisms and their biofilms. Carbohydrate Polymers, 2017, 174, 369-376.	5.1	19
11	Assessment of the prebiotic effect of quinoa and amaranth in the human intestinal ecosystem. Food and Function, 2016, 7, 3782-3788.	2.1	41
12	Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage. Food and Function, 2016, 7, 3273-3282.	2.1	33
13	Filaggrin Gene Polymorphism Pro478Ser, but Not Loss-of-Function Mutations Mp.Arg501Ter or C.2282del4, Relates with Atopic Dermatitis Severity and Increased Staphylococcal aureus Colonization in Adult Patients. Journal of Allergy and Clinical Immunology, 2015, 135, AB260.	1.5	0
14	Efficacy and Safety of Chitosan Coated Garments on Atopic Dermatitis Management: A Randomized Controlled Trial. Journal of Allergy and Clinical Immunology, 2015, 135, AB265.	1.5	0
15	Chitosan Coated Textiles May Improve Atopic Dermatitis Severity by Modulating Skin Staphylococcal Profile: A Randomized Controlled Trial. PLoS ONE, 2015, 10, e0142844.	1.1	30
16	In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (Vicia faba): dynamic modulation of the intestinal microbiota and metabolomic output. Food and Function, 2015, 6, 3316-3322.	2.1	35
17	Antioxidant properties of sterilized yacon (Smallanthus sonchifolius) tuber flour. Food Chemistry, 2015, 188, 504-509.	4.2	33
18	Development of Oral Strips Containing Chitosan as Active Ingredient: A Product for Buccal Health. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 906-918.	1.8	7

Freni Tavaria

#	Article	IF	CITATIONS
19	In vitro assessment of the prebiotic potential of Aloe vera mucilage and its impact on the human microbiota. Food and Function, 2015, 6, 525-531.	2.1	51
20	Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran. Journal of Functional Foods, 2014, 6, 438-449.	1.6	121
21	Antimicrobial and Antibiofilm Activity of Chitosan on the Oral Pathogen Candida albicans. Pathogens, 2014, 3, 908-919.	1.2	51
22	Influence of abiotic factors on the antimicrobial activity of chitosan. Journal of Dermatology, 2013, 40, 1014-1019.	0.6	28
23	A quitosana como biomaterial odontológico: estado da arte. Revista Brasileira De Engenharia Biomedica, 2013, 29, 110-120.	0.3	21
24	Study of antimicrobial activity and atomic force microscopy imaging of the action mechanism of cashew tree gum. Carbohydrate Polymers, 2012, 90, 270-274.	5.1	46
25	Biodiversity and characterization of Staphylococcus species isolated from a small manufacturing dairy plant in Portugal. International Journal of Food Microbiology, 2011, 146, 123-129.	2.1	39
26	Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiology, 2008, 25, 922-928.	2.1	238
27	Changes in the pool of free fatty acids in ovine, bovine and caprine milk fats, effected by viable cells and cell-free extracts of Lactococcus lactis and Debaryomyces vanrijiae. Food Chemistry, 2007, 103, 1112-1118.	4.2	5
28	Contribution of coagulant and native microflora to the volatile-free fatty acid profile of an artisanal cheese. International Dairy Journal, 2006, 16, 886-894.	1.5	21
29	Effect of dairy farm and milk refrigeration on microbiological and microstructural characteristics of matured Serra da Estrela cheese. International Dairy Journal, 2006, 16, 895-902.	1.5	24
30	Contribution of wild strains of lactic acid bacteria to the typical aroma of an artisanal cheese. Developments in Food Science, 2006, , 129-132.	0.0	2
31	Enzymatic activities of non-starter lactic acid bacteria isolated from a traditional Portuguese cheese. Enzyme and Microbial Technology, 2003, 33, 236-243.	1.6	17
32	Amino acid and soluble nitrogen evolution throughout ripening of Serra da Estrela cheese. International Dairy Journal, 2003, 13, 537-545.	1.5	55
33	Storage and lyophilization effects of extracts of Cynara cardunculus on the degradation of ovine and caprine caseins. Food Chemistry, 2001, 72, 79-88.	4.2	31
34	On the microbiology of Serra da Estrela cheese: geographical and chronological considerations. Food Microbiology, 2000, 17, 293-304.	2.1	33
35	Relationships between flavour and microbiological profiles in Serra da Estrela cheese throughout ripening. International Dairy Journal, 2000, 10, 255-262.	1.5	83