Jesse R Dixon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5398046/publications.pdf Version: 2024-02-01

IFSSE P DIVON

#	Article	IF	CITATIONS
1	Analysis of Hi-C Data for Discovery of Structural Variations in Cancer. Methods in Molecular Biology, 2022, 2301, 143-161.	0.4	5
2	Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genomics, 2022, 2, 100107.	3.0	58
3	Coming full circle: On the origin and evolution of the looping model for enhancer–promoter communication. Journal of Biological Chemistry, 2022, 298, 102117.	1.6	21
4	Incorporation of a nucleoside analog maps genome repair sites in postmitotic human neurons. Science, 2021, 372, 91-94.	6.0	68
5	Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nature Structural and Molecular Biology, 2021, 28, 152-161.	3.6	172
6	DNA methylation atlas of the mouse brain at single-cell resolution. Nature, 2021, 598, 120-128.	13.7	135
7	Genome reconstruction and haplotype phasing using chromosome conformation capture methodologies. Briefings in Functional Genomics, 2020, 19, 139-150.	1.3	10
8	Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nature Genetics, 2020, 52, 1178-1188.	9.4	79
9	Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation. Genes and Development, 2020, 34, 913-930.	2.7	63
10	Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nature Genetics, 2020, 52, 294-305.	9.4	180
11	Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nature Genetics, 2019, 51, 1252-1262.	9.4	139
12	TADs for Life: Chromatin Domain Organization Regulates Lifespan in C.Âelegans. Developmental Cell, 2019, 51, 131-132.	3.1	0
13	Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nature Methods, 2019, 16, 999-1006.	9.0	200
14	Comparing 3D Genome Organization in Multiple Species Using Phylo-HMRF. Cell Systems, 2019, 8, 494-505.e14.	2.9	27
15	Robust single-cell Hi-C clustering by convolution- and random-walk–based imputation. Proceedings of the United States of America, 2019, 116, 14011-14018.	3.3	101
16	Acute myeloid leukemia driven by the CALM-AF10 fusion gene is dependent on BMI1. Experimental Hematology, 2019, 74, 42-51.e3.	0.2	15
17	A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nature Communications, 2018, 9, 5139.	5.8	149
18	Integrative detection and analysis of structural variation in cancer genomes. Nature Genetics, 2018, 50, 1388-1398.	9.4	268

Jesse R Dixon

#	Article	IF	CITATIONS
19	Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature, 2017, 547, 232-235.	13.7	406
20	Chromatin Domains: The Unit of Chromosome Organization. Molecular Cell, 2016, 62, 668-680.	4.5	653
21	A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Research, 2016, 26, 397-405.	2.4	111
22	Complete haplotype phasing of the MHC and KIR loci with targeted HaploSeq. BMC Genomics, 2015, 16, 900.	1.2	10
23	A CRISPR Connection between Chromatin Topology and Genetic Disorders. Cell, 2015, 161, 955-957.	13.5	13
24	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	13.7	5,653
25	Chromatin architecture reorganization during stem cell differentiation. Nature, 2015, 518, 331-336.	13.7	1,442
26	CRISPR Reveals a Distal Super-Enhancer Required for Sox2 Expression in Mouse Embryonic Stem Cells. PLoS ONE, 2014, 9, e114485.	1.1	168
27	Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis. Genome Research, 2014, 24, 920-929.	2.4	63
28	Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 996-1001.	3.3	700
29	A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature, 2013, 503, 290-294.	13.7	1,074
30	Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nature Biotechnology, 2013, 31, 1111-1118.	9.4	257
31	Bayesian Inference of Spatial Organizations of Chromosomes. PLoS Computational Biology, 2013, 9, e1002893.	1.5	188
32	Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485, 376-380.	13.7	5,786
33	A map of the cis-regulatory sequences in the mouse genome. Nature, 2012, 488, 116-120.	13.7	1,306
34	Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes and Development, 2010, 24, 2760-2765.	2.7	224