Satoru Chatani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5397751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmospheric Environment, 2008, 42, 4976-4988.	4.1	242
2	Verification of anthropogenic emissions of China by satellite and ground observations. Atmospheric Environment, 2011, 45, 6347-6358.	4.1	124
3	Projections of air pollutant emissions and its impacts on regional air quality in China in 2020. Atmospheric Chemistry and Physics, 2011, 11, 3119-3136.	4.9	94
4	Sensitivity analysis of ground level ozone in India using WRF-CMAQ models. Atmospheric Environment, 2016, 131, 29-40.	4.1	80
5	Air quality diagnosis from comprehensive observations of total OH reactivity and reactive trace species in urban central Tokyo. Atmospheric Environment, 2012, 49, 51-59.	4.1	65
6	A Modeling Study of Coarse Particulate Matter Pollution in Beijing: Regional Source Contributions and Control Implications for the 2008 Summer Olympics. Journal of the Air and Waste Management Association, 2008, 58, 1057-1069.	1.9	63
7	Contributions of Condensable Particulate Matter to Atmospheric Organic Aerosol over Japan. Environmental Science & Technology, 2018, 52, 8456-8466.	10.0	54
8	Emission inventory of non-methane volatile organic compounds from anthropogenic sources in India. Atmospheric Environment, 2015, 102, 209-219.	4.1	50
9	Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan. Atmospheric Environment, 2011, 45, 1383-1393.	4.1	43
10	Comprehensive analyses of source sensitivities and apportionments of PM _{2.5} and ozone over Japan via multiple numerical techniques. Atmospheric Chemistry and Physics, 2020, 20, 10311-10329.	4.9	42
11	Affluent countries inflict inequitable mortality and economic loss on Asia via PM2.5 emissions. Environment International, 2020, 134, 105238.	10.0	36
12	Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nature Communications, 2021, 12, 6286.	12.8	36
13	Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate. Journal of the Air and Waste Management Association, 2014, 64, 374-387.	1.9	33
14	Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030. Atmospheric Chemistry and Physics, 2014, 14, 9259-9277.	4.9	33
15	Overview of Model Inter-Comparison in Japan's Study for Reference Air Quality Modeling (J-STREAM). Atmosphere, 2018, 9, 19.	2.3	33
16	Uncertainties in O3 concentrations simulated by CMAQ over Japan using four chemical mechanisms. Atmospheric Environment, 2019, 198, 448-462.	4.1	30
17	Determination and potential importance of diterpene (kaur-16-ene) emitted from dominant coniferous trees in Japan. Chemosphere, 2012, 87, 886-893.	8.2	29
18	Analysis of summertime atmospheric transport of fine particulate matter in Northeast Asia. Asia-Pacific Journal of Atmospheric Sciences, 2013, 49, 347-360.	2.3	27

SATORU CHATANI

#	Article	IF	CITATIONS
19	Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol. Atmospheric Environment, 2015, 120, 38-50.	4.1	26
20	Emission Inventory of On-Road Transport in Bangkok Metropolitan Region (BMR) Development during 2007 to 2015 Using the GAINS Model. Atmosphere, 2017, 8, 167.	2.3	25
21	Exploring Gaps between Bottom-Up and Top-Down Emission Estimates Based on Uncertainties in Multiple Emission Inventories: A Case Study on CH4 Emissions in China. Sustainability, 2019, 11, 2054.	3.2	23
22	Influences of the variation in inflow to East Asia on surface ozone over Japan during 1996–2005. Atmospheric Chemistry and Physics, 2011, 11, 8745-8758.	4.9	22
23	Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway. Atmosphere, 2018, 9, 132.	2.3	21
24	Simulation of urban and regional air pollution in Bangladesh. Journal of Geophysical Research, 2012, 117, .	3.3	19
25	Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan. Atmosphere, 2018, 9, 179.	2.3	16
26	Multi-Model Analyses of Dominant Factors Influencing Elemental Carbon in Tokyo Metropolitan Area of Japan. Aerosol and Air Quality Research, 2014, 14, 396-405.	2.1	15
27	Identifying key factors influencing model performance on ground-level ozone over urban areas in Japan through model inter-comparisons. Atmospheric Environment, 2020, 223, 117255.	4.1	14
28	Model Inter-Comparison for PM2.5 Components over urban Areas in Japan in the J-STREAM Framework. Atmosphere, 2020, 11, 222.	2.3	14
29	Historical and future anthropogenic warming effects on droughts, fires and fire emissions of CO ₂ and PM _{2.5} in equatorial Asia when 2015-like El Niño events occur. Earth System Dynamics, 2020, 11, 435-445.	7.1	14
30	Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan. Asian Journal of Atmospheric Environment, 2018, 12, 139-152.	1.1	13
31	Model Performance Differences in Sulfate Aerosol in Winter over Japan Based on Regional Chemical Transport Models of CMAQ and CAMx. Atmosphere, 2018, 9, 488.	2.3	11
32	Evaluation of Ensemble Approach for O3 and PM2.5 Simulation. Asian Journal of Atmospheric Environment, 2010, 4, 150-156.	1.1	11
33	Air Pollution Over India: Causal Factors for the High Pollution with Implications for Mitigation. ACS Earth and Space Chemistry, 2021, 5, 3297-3312.	2.7	10
34	A new approach for estimation of the effect of NOx emission reduction on roadside NO2 concentration in Tokyo. Atmospheric Environment, 2013, 68, 92-102.	4.1	7
35	Differences in Model Performance and Source Sensitivities for Sulfate Aerosol Resulting from Updates of the Aqueous- and Gas-Phase Oxidation Pathways for a Winter Pollution Episode in Tokyo, Japan. Atmosphere, 2019, 10, 544.	2.3	7
36	Evaluation of non-methane hydrocarbon (NMHC) emissions based on an ambient air measurement in Tokyo area, Japan. Atmospheric Environment, 2010, 44, 4982-4993.	4.1	6

SATORU CHATANI

#	Article	IF	CITATIONS
37	Seasonal variation of isoprene basal emission in mature Quercus crispula trees under experimental warming of roots and branches. Geochemical Journal, 2012, 46, 163-167.	1.0	6
38	Uncertainties Caused by Major Meteorological Analysis Data Sets in Simulating Air Quality Over India. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6230-6247.	3.3	6
39	Model Performance Differences in Fine-Mode Nitrate Aerosol during Wintertime over Japan in the J-STREAM Model Inter-Comparison Study. Atmosphere, 2020, 11, 511.	2.3	5
40	Advantages of Continuous Monitoring of Hourly PM2.5 Component Concentrations in Japan for Model Validation and Source Sensitivity Analyses. Asian Journal of Atmospheric Environment, 2021, 15, 1-29.	1.1	5
41	Long-term trend of regional passenger road transport demand and emission estimation under exhaust emission regulation scenario in Thailand. Environmental Research Communications, 2020, 2, 051009.	2.3	3
42	Year-round modeling of sulfate aerosol over Asia through updates of aqueous-phase oxidation and gas-phase reactions with stabilized Criegee intermediates. Atmospheric Environment: X, 2021, 12, 100123.	1.4	2