Adrian Liston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5397672/publications.pdf

Version: 2024-02-01

207 papers 15,090 citations

²⁶⁵⁶⁷
56
h-index

21474 114 g-index

225 all docs

225
docs citations

times ranked

225

24592 citing authors

#	Article	IF	CITATIONS
1	Intratumoral DNA-based delivery of checkpoint-inhibiting antibodies and interleukin 12 triggers T cell infiltration and anti-tumor response. Cancer Gene Therapy, 2022, 29, 984-992.	2.2	9
2	The EXIMIOUS projectâ€"Mapping exposure-induced immune effects: connecting the exposome and the immunome. Environmental Epidemiology, 2022, 6, e193.	1.4	8
3	Primary Sj $ ilde{A}^{q}$ gren's syndrome and high type I interferon signalling in a kindred with C2 deficiency. Rheumatology Advances in Practice, 2022, 6, rkac018.	0.3	O
4	AAVâ€mediated delivery of an antiâ€BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Molecular Medicine, 2022, 14, e09824.	3.3	13
5	Role for Granulocyte <scp>Colonyâ€Stimulating</scp> Factor in Neutrophilic Extramedullary Myelopoiesis in a Murine Model of Systemic Juvenile Idiopathic Arthritis. Arthritis and Rheumatology, 2022, 74, 1257-1270.	2.9	6
6	Targeting TLR4 during vaccination boosts MAdCAM-1 ⁺ lymphoid stromal cell activation and promotes the aged germinal center response. Science Immunology, 2022, 7, eabk0018.	5.6	17
7	Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. Science, 2022, 376, eabm6380.	6.0	25
8	Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nature Immunology, 2022, 23, 878-891.	7.0	59
9	A fresh look at a neglected regulatory lineage: CD8+Foxp3+ Regulatory T cells. Immunology Letters, 2022, 247, 22-26.	1.1	8
10	Context-dependent effects of IL-2 rewire immunity into distinct cellular circuits. Journal of Experimental Medicine, 2022, 219, .	4.2	9
11	Brain-resident regulatory T cells and their role in health and disease. Immunology Letters, 2022, 248, 26-30.	1.1	25
12	Inflammatory aortitis in a patient with type 2 hyper IgM syndrome. Rheumatology, 2021, 60, e87-e89.	0.9	1
13	Diagnosis of deficiency of adenosine deaminase type 2 in adulthood. Scandinavian Journal of Rheumatology, 2021, 50, 1-4.	0.6	2
14	A booster dose enhances immunogenicity of the COVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged mice. Med, 2021, 2, 243-262.e8.	2.2	62
15	Fat Induces Glucose Metabolism in Nontransformed Liver Cells and Promotes Liver Tumorigenesis. Cancer Research, 2021, 81, 1988-2001.	0.4	43
16	Phenotypic analysis of pyrin-associated autoinflammation with neutrophilic dermatosis patients during treatment. Rheumatology, 2021, 60, 5436-5446.	0.9	10
17	AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nature Communications, 2021, 12, 2890.	5.8	26
18	CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function. Immunology, 2021, 163, 512-520.	2.0	46

#	Article	IF	CITATIONS
19	Treatment-Induced BAFF Expression and B Cell Biology in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 676619.	2.2	6
20	Applying for Junior Faculty Positions as a Research Scientist. Stroke, 2021, 52, e360-e363.	1.0	2
21	Research priorities for neuroimmunology: identifying the key research questions to be addressed by 2030. Wellcome Open Research, 2021, 6, 194.	0.9	5
22	Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nature Communications, 2021, 12, 4117.	5.8	170
23	Pax5 regulates B cell immunity by promoting PI3K signaling via PTEN down-regulation. Science Immunology, 2021, 6, .	5.6	28
24	Unstable regulatory T cells, enriched for na \tilde{A} -ve and Nrp1 <code>^{neg}</code> cells, are purged after fate challenge. Science Immunology, 2021, 6, .	5.6	13
25	MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development. Cell Reports, 2021, 36, 109390.	2.9	19
26	Starting Your Independent Research Laboratory. Stroke, 2021, 52, e520-e522.	1.0	5
27	Predictors of neutralizing antibody response to BNT162b2 vaccination in allogeneic hematopoietic stem cell transplant recipients. Journal of Hematology and Oncology, 2021, 14, 174.	6.9	40
28	Impaired HA-specific T follicular helper cell and antibody responses to influenza vaccination are linked to inflammation in humans. ELife, 2021, 10 , .	2.8	26
29	Human immune diversity: from evolution to modernity. Nature Immunology, 2021, 22, 1479-1489.	7.0	64
30	Monogenic Adult-Onset Inborn Errors of Immunity. Frontiers in Immunology, 2021, 12, 753978.	2.2	20
31	Decreased expression of miR-29 family associated with autoimmune myasthenia gravis. Journal of Neuroinflammation, 2020, 17, 294.	3.1	14
32	Microglia Require CD4ÂT Cells to Complete the Fetal-to-Adult Transition. Cell, 2020, 182, 625-640.e24.	13.5	191
33	Heterogeneous Effects of Calorie Content and Nutritional Components Underlie Dietary Influence on Pancreatic Cancer Susceptibility. Cell Reports, 2020, 32, 107880.	2.9	6
34	Increased ILâ€10â€producing regulatory T cells are characteristic of severe cases of COVIDâ€19. Clinical and Translational Immunology, 2020, 9, e1204.	1.7	59
35	Establishing a Unified COVID-19 "lmmunome― Integrating Coronavirus Pathogenesis and Host Immunopathology. Frontiers in Immunology, 2020, 11, 1642.	2.2	11
36	Adult-Onset ANCA-Associated Vasculitis in SAVI: Extension of the Phenotypic Spectrum, Case Report and Review of the Literature. Frontiers in Immunology, 2020, 11, 575219.	2,2	32

#	Article	IF	Citations
37	Dominant mutations in ITPR3 cause Charcotâ€Marieâ€Tooth disease. Annals of Clinical and Translational Neurology, 2020, 7, 1962-1972.	1.7	9
38	A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature, 2020, 583, 447-452.	13.7	40
39	Defective Sec $61\hat{l}\pm1$ underlies a novel cause of autosomal dominant severe congenital neutropenia. Journal of Allergy and Clinical Immunology, 2020, 146, 1180-1193.	1.5	32
40	Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. ELife, 2020, 9, .	2.8	48
41	Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nature Neuroscience, 2019, 22, 2111-2116.	7.1	176
42	Prospective study evaluating immuneâ€mediated mechanisms and predisposing factors underlying persistent postinfectious abdominal complaints. Neurogastroenterology and Motility, 2019, 31, e13542.	1.6	3
43	Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Science Translational Medicine, 2019, 11 , .	5.8	74
44	Machine learning identifies an immunological pattern associated with multiple juvenile idiopathic arthritis subtypes. Annals of the Rheumatic Diseases, 2019, 78, 617-628.	0.5	38
45	NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology. Annals of the Rheumatic Diseases, 2019, 78, 342-349.	0.5	21
46	IFN-Î ³ and CD25 drive distinct pathologic features during hemophagocytic lymphohistiocytosis. Journal of Allergy and Clinical Immunology, 2019, 143, 2215-2226.e7.	1.5	49
47	Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood, 2019, 133, 319-330.	0.6	14
48	The origins of diversity in human immunity. Nature Immunology, 2018, 19, 209-210.	7.0	10
49	Abnormal differentiation of B cells and megakaryocytes in patients with Roifman syndrome. Journal of Allergy and Clinical Immunology, 2018, 142, 630-646.	1.5	36
50	Multiple sclerosis risk variants alter expression of co-stimulatory genes in B cells. Brain, 2018, 141, 786-796.	3.7	39
51	A kindred with mutant IKAROS and autoimmunity. Journal of Allergy and Clinical Immunology, 2018, 142, 699-702.e12.	1.5	39
52	Insufficient IL-10 Production as a Mechanism Underlying the Pathogenesis of Systemic Juvenile Idiopathic Arthritis. Journal of Immunology, 2018, 201, 2654-2663.	0.4	21
53	The Long Non-coding RNA Flatr Anticipates Foxp3 Expression in Regulatory T Cells. Frontiers in Immunology, 2018, 9, 1989.	2.2	36
54	Mice Deficient in Nucleoporin Nup210 Develop Peripheral T Cell Alterations. Frontiers in Immunology, 2018, 9, 2234.	2.2	8

#	Article	IF	CITATIONS
55	Genetic Architecture of Adaptive Immune System Identifies Key Immune Regulators. Cell Reports, 2018, 25, 798-810.e6.	2.9	36
56	Phenotype molding of stromal cells in the lung tumor microenvironment. Nature Medicine, 2018, 24, 1277-1289.	15.2	1,126
57	ADA2 Deficiency Mimicking Idiopathic Multicentric Castleman Disease. Pediatrics, 2018, 142, .	1.0	26
58	A novel kindred with inherited STAT2 deficiency and severe viral illness. Journal of Allergy and Clinical Immunology, 2017, 139, 1995-1997.e9.	1.5	71
59	Programmed cell deathâ€1 expression correlates with disease severity and ILâ€5 in chronic rhinosinusitis with nasal polyps. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 985-993.	2.7	23
60	Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature Reviews Immunology, 2017, 17, 208-214.	10.6	332
61	Irf4 Expression in Thymic Epithelium Is Critical for Thymic Regulatory T Cell Homeostasis. Journal of Immunology, 2017, 198, 1952-1960.	0.4	15
62	Cytotoxic T-lymphocyte-associated protein 4-lg effectively controls immune activation and inflammatory disease in a novel murine model of leaky severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2017, 140, 1394-1403.e8.	1.5	6
63	Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cellular and Molecular Life Sciences, 2017, 74, 2095-2106.	2.4	24
64	An orthologous non-MHC locus in rats and mice is linked to CD4+ and CD8+ T-cell proportion. Genes and Immunity, 2017, 18, 118-126.	2.2	3
65	Different Immunological Pathways Underlie the Immune Response to Pneumococcal Polysaccharides. Journal of Clinical Immunology, 2017, 37, 277-278.	2.0	2
66	CCR7 Modulates the Generation of Thymic Regulatory T Cells by Altering the Composition of the Thymic Dendritic Cell Compartment. Cell Reports, 2017, 21, 168-180.	2.9	37
67	Evidence for long-term sensitization of the bowel in patients with post-infectious-IBS. Scientific Reports, 2017, 7, 13606.	1.6	46
68	Homozygous N-terminal missense mutation in TRNT1 leads to progressive B-cell immunodeficiency in adulthood. Journal of Allergy and Clinical Immunology, 2017, 139, 360-363.e6.	1.5	41
69	Inflammatory Gene Expression Profile and Defective Interferonâ€Ĵ³ and Granzyme K in Natural Killer Cells From Systemic Juvenile Idiopathic Arthritis Patients. Arthritis and Rheumatology, 2017, 69, 213-224.	2.9	67
70	No Effect of Dietary Aspartame or Stevia on Pancreatic Acinar Carcinoma Development, Growth, or Induced Mortality in a Murine Model. Frontiers in Oncology, 2017, 7, 18.	1.3	7
71	No Functional Role for microRNA-342 in a Mouse Model of Pancreatic Acinar Carcinoma. Frontiers in Oncology, 2017, 7, 101.	1.3	7
72	Murine Pancreatic Acinar Cell Carcinoma Growth Kinetics Are Independent of Dietary Vitamin D Deficiency or Supplementation. Frontiers in Oncology, 2017, 7, 133.	1.3	1

#	Article	IF	CITATIONS
73	Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget, 2017, 8, 41932-41946.	0.8	95
74	Beta-Cell Fragility As a Common Underlying Risk Factor in Type 1 and Type 2 Diabetes. Trends in Molecular Medicine, 2017, 23, 181-194.	3.5	53
75	miR-29a-deficiency does not modify the course of murine pancreatic acinar carcinoma. Oncotarget, 2017, 8, 26911-26917.	0.8	9
76	NOD mice, susceptible to pancreatic autoimmunity, demonstrate delayed growth of pancreatic cancer. Oncotarget, 2017, 8, 80167-80174.	0.8	2
77	Genetic ablation of IP3receptor 2 increases cytokines and decreases survival ofSOD1G93Amice. Human Molecular Genetics, 2016, 25, 3491-3499.	1.4	19
78	miR- $17\hat{a}^{-1}/492$ family clusters control iNKT cell ontogenesis via modulation of TGF- \hat{l}^2 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8286-E8295.	3.3	44
79	TCR transgenic mice reveal the impact of type 1 diabetes loci on early and late disease checkpoints. Immunology and Cell Biology, 2016, 94, 709-713.	1.0	4
80	Neuro-immune interactions in chemical-induced airway hyperreactivity. European Respiratory Journal, 2016, 48, 380-392.	3.1	37
81	Immunologic profiles of multiple sclerosis treatments reveal shared early B cell alterations. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e240.	3.1	35
82	Shaping Variation in the Human Immune System. Trends in Immunology, 2016, 37, 637-646.	2.9	91
83	Expression Diversity Adds Richness to T Cell Populations. Immunity, 2016, 45, 960-962.	6.6	1
84	Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Science Translational Medicine, 2016, 8, 332ra45.	5.8	241
85	Mild humoral immunodeficiency in a patient with Xâ€linked Kabuki syndrome. American Journal of Medical Genetics, Part A, 2016, 170, 801-803.	0.7	11
86	Noninvasive Imaging Reveals Stable Transgene Expression in Mouse Airways After Delivery of a Nonintegrating Recombinant Adeno-Associated Viral Vector. Human Gene Therapy, 2016, 27, 60-71.	1.4	10
87	Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nature Genetics, 2016, 48, 519-527.	9.4	117
88	The cellular composition of the human immune system is shaped by age and cohabitation. Nature Immunology, 2016, 17, 461-468.	7.0	258
89	Phenotypic variability in patients with ADA2 deficiency due to identical homozygous R169Q mutations. Rheumatology, 2016, 55, 902-910.	0.9	116
90	IL-2 consumption by highly activated CD8 TÂcells induces regulatory T-cell dysfunction in patients with hemophagocytic lymphohistiocytosis. Journal of Allergy and Clinical Immunology, 2016, 138, 200-209.e8.	1.5	49

#	Article	IF	Citations
91	Histamine Receptor H1–Mediated Sensitization of TRPV1 Mediates Visceral Hypersensitivity and Symptoms in Patients With Irritable Bowel Syndrome. Gastroenterology, 2016, 150, 875-887.e9.	0.6	263
92	The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity. Diabetes, 2016, 65, 53-61.	0.3	114
93	Psychological comorbidity increases the risk for postinfectious IBS partly by enhanced susceptibility to develop infectious gastroenteritis. Gut, 2016, 65, 1279-1288.	6.1	71
94	Premature thymic involution is independent of structural plasticity of the thymic stroma. European Journal of Immunology, 2015, 45, 1535-1547.	1.6	11
95	miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood, 2015, 125, 2206-2216.	0.6	70
96	The thymoprotective function of leptin is indirectly mediated via suppression of obesity. Immunology, 2015, 146, 122-129.	2.0	7
97	The Molecular Control of Regulatory T Cell Induction. Progress in Molecular Biology and Translational Science, 2015, 136, 69-97.	0.9	11
98	Promiscuous Foxp3â€ere activity reveals a differential requirement for CD28 in Foxp3 ⁺ and Foxp3 ^{â^'} T cells. Immunology and Cell Biology, 2015, 93, 417-423.	1.0	53
99	Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. Journal of Allergy and Clinical Immunology, 2015, 135, 283-287.e5.	1.5	107
100	How informative is the mouse for human gut microbiota research?. DMM Disease Models and Mechanisms, 2015, 8, 1-16.	1.2	990
101	Quantitative Reduction of the TCR Adapter Protein SLP-76 Unbalances Immunity and Immune Regulation. Journal of Immunology, 2015, 194, 2587-2595.	0.4	28
102	Regulatory T cell differentiation: cooperation saves the day. EMBO Journal, 2015, 34, 1145-1146.	3.5	1
103	C-kit is important for SOD1G93A mouse survival independent of mast cells. Neuroscience, 2015, 301, 415-420.	1.1	4
104	Brief Report: <i>IFIH1</i> Mutation Causes Systemic Lupus Erythematosus With Selective IgA Deficiency. Arthritis and Rheumatology, 2015, 67, 1592-1597.	2.9	106
105	Lprâ€induced systemic autoimmunity is unaffected by mast cell deficiency. Immunology and Cell Biology, 2015, 93, 841-848.	1.0	6
106	Humoral autoimmunity: A failure of regulatory T cells?. Autoimmunity Reviews, 2015, 14, 735-741.	2.5	45
107	Transcriptional upregulation of myelin components in spontaneous myelin basic protein-deficient mice. Brain Research, 2015, 1606, 125-132.	1.1	3
108	CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells. Nature Communications, 2015, 6, 8644.	5.8	117

#	Article	IF	Citations
109	DNA methylation profiling of non-small cell lung cancer reveals a COPD-driven immune-related signature. Thorax, 2015, 70, 1113-1122.	2.7	37
110	Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice. Neurobiology of Disease, 2015, 73, 275-288.	2.1	46
111	Mast Cells Play No Role in the Pathogenesis of Postoperative Ileus Induced by Intestinal Manipulation. PLoS ONE, 2014, 9, e85304.	1.1	28
112	Mutant ADA2 in Vasculopathies. New England Journal of Medicine, 2014, 371, 478-481.	13.9	122
113	ldd13 is involved in determining immunoregulatory DN T-cell number in NOD mice. Genes and Immunity, 2014, 15, 82-87.	2.2	8
114	Gain-of-function mutations in signal transducer and activator of transcription 1 (STAT1): Chronic mucocutaneous candidiasis accompanied by enamel defects and delayed dental shedding. Journal of Allergy and Clinical Immunology, 2014, 134, 1209-1213.e6.	1.5	41
115	Systemic Juvenile Idiopathic Arthritis–like Syndrome in Mice Following Stimulation of the Immune System With Freund's Complete Adjuvant: Regulation by Interferonâ€Î³. Arthritis and Rheumatology, 2014, 66, 1340-1351.	2.9	71
116	A novel Zap70 mutation with reduced protein stability demonstrates the rateâ€limiting threshold for Zap70 in Tâ€cell receptor signalling. Immunology, 2014, 141, 377-387.	2.0	11
117	Uhrf to Treg cells: reinforcing the mucosal peacekeepers. Nature Immunology, 2014, 15, 533-534.	7.0	4
118	Homeostatic control of regulatory T cell diversity. Nature Reviews Immunology, 2014, 14, 154-165.	10.6	382
119	Immunological Ignorance Allows Long-Term Gene Expression After Perinatal Recombinant Adeno-Associated Virus-Mediated Gene Transfer to Murine Airways. Human Gene Therapy, 2014, 25, 517-528.	1.4	16
120	Type 1 Diabetes in NOD Mice Unaffected by Mast Cell Deficiency. Diabetes, 2014, 63, 3827-3834.	0.3	25
121	A <scp>ZAP</scp> â€70 kinase domain variant prevents thymocyteâ€positive selection despite signalling <scp>CD</scp> 69 induction. Immunology, 2014, 141, 587-595.	2.0	4
122	Anti-CD4 treatment inhibits autoimmunity in scurfy mice through theÂattenuation of co-stimulatory signals. Journal of Autoimmunity, 2014, 50, 23-32.	3.0	25
123	MiR-29a is Essential in Leukemic Transformation and Maintaining Hematopoietic Stem Cell Self-Renewal. Blood, 2014, 124, 4792-4792.	0.6	0
124	Olmsted syndrome: exploration of the immunological phenotype. Orphanet Journal of Rare Diseases, 2013, 8, 79.	1.2	45
125	Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biology, 2013, 14, R4.	13.9	381
126	No evidence for a role of rare <i>CYP27B1</i> functional variations in multiple sclerosis. Annals of Neurology, 2013, 73, 433-437.	2.8	31

#	Article	IF	CITATIONS
127	Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nature Immunology, 2013, 14, 959-965.	7.0	209
128	Crucial Role of Transient Receptor Potential Ankyrin 1 and Mast Cells in Induction of Nonallergic Airway Hyperreactivity in Mice. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 486-493.	2.5	85
129	The Intracellular Sensor NOD2 Induces MicroRNA-29 Expression in Human Dendritic Cells to Limit IL-23 Release. Immunity, 2013, 39, 521-536.	6.6	177
130	Rapamycin increases survival in ALS mice lacking mature lymphocytes. Molecular Neurodegeneration, 2013, 8, 31.	4.4	58
131	Developmental Plasticity of Murine and Human Foxp3+ Regulatory T Cells. Advances in Immunology, 2013, 119, 85-106.	1.1	19
132	IL-2 coordinates IL-2–producing and regulatory T cell interplay. Journal of Experimental Medicine, 2013, 210, 2707-2720.	4.2	85
133	Aire mediates thymic expression and tolerance of pancreatic antigens via an unconventional transcriptional mechanism. European Journal of Immunology, 2013, 43, 75-84.	1.6	26
134	Genetic ablation of phospholipase C delta 1 increases survival in SOD1G93A mice. Neurobiology of Disease, 2013, 60, 11-17.	2.1	18
135	miR-29a maintains hematopoietic stem cell self-renewal and is required for leukemic transformation. Experimental Hematology, 2013, 41, S43.	0.2	O
136	Unusual selection and peripheral homeostasis for immunoregulatory <scp>CD</scp> 4 ^{â^²} Â <scp>CD</scp> 8 ^{â^²} <scp>T</scp> cells. Immunology, 2013, 139, 129-139.	2.0	2
137	Micro <scp>RNA</scp> regulation of Tâ€eell development. Immunological Reviews, 2013, 253, 53-64.	2.8	51
138	An evolutionarily conserved mutual interdependence between <scp>A</scp> ire and micro <scp>RNA</scp> s in promiscuous gene expression. European Journal of Immunology, 2013, 43, 1769-1778.	1.6	48
139	Beta-2 microglobulin is important for disease progression in a murine model for amyotrophic lateral sclerosis. Frontiers in Cellular Neuroscience, 2013, 7, 249.	1.8	20
140	MiR-29a Maintains Hematopoietic Stem Cell Self-Renewal and Is Required For Myeloid Leukemogenesis. Blood, 2013, 122, 1190-1190.	0.6	0
141	Macrophages have no lineage history of Foxp3 expression. Blood, 2012, 119, 1316-1318.	0.6	15
142	A new ICB sister journal focuses on clinical and translational immunology. Clinical and Translational Immunology, 2012, 1, e1.	1.7	1
143	MicroRNAs Control the Maintenance of Thymic Epithelia and Their Competence for T Lineage Commitment and Thymocyte Selection. Journal of Immunology, 2012, 189, 3894-3904.	0.4	54
144	The Thymic Niche Does Not Limit Development of the Naturally Diverse Population of Mouse Regulatory T Lymphocytes. Journal of Immunology, 2012, 189, 3831-3837.	0.4	10

#	Article	IF	CITATIONS
145	MicroRNA-29 in the adaptive immune system: setting the threshold. Cellular and Molecular Life Sciences, 2012, 69, 3533-3541.	2.4	88
146	Loss of T cell microRNA provides systemic protection against autoimmune pathology in mice. Journal of Autoimmunity, 2012, 38, 39-48.	3.0	19
147	The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nature Immunology, 2012, 13, 181-187.	7.0	152
148	Antigen Recognition By Autoreactive Cd4+ Thymocytes Drives Homeostasis Of The Thymic Medulla. PLoS ONE, 2012, 7, e52591.	1.1	30
149	Molecular control over thymic involution: From cytokines and micro <scp>RNA</scp> to aging and adipose tissue. European Journal of Immunology, 2012, 42, 1073-1079.	1.6	135
150	The Immunogenetic Architecture of Autoimmune Disease. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007260-a007260.	2.3	71
151	Immune tolerance: Are regulatory T cell subsets needed to explain suppression of autoimmunity?. BioEssays, 2012, 34, 569-575.	1.2	15
152	Tâ€follicular helper cell differentiation and the coâ€option of this pathway by nonâ€helper cells. Immunological Reviews, 2012, 247, 143-159.	2.8	76
153	In Vitro Treg Suppression Assays. Methods in Molecular Biology, 2011, 707, 21-37.	0.4	164
154	Live Imaging of Dendritic Cell–Treg Cell Interactions. Methods in Molecular Biology, 2011, 707, 83-101.	0.4	2
155	Decreased T-cell receptor signaling through CARD11 differentially compromises forkhead box protein 3–positive regulatory versus TH2 effector cells to cause allergy. Journal of Allergy and Clinical Immunology, 2011, 127, 1277-1285.e5.	1.5	59
156	In Vitro Expansion of Alloantigen-Specific Regulatory T Cells and Their Use in Prevention of Allograft Rejection. Methods in Molecular Biology, 2011, 707, 187-196.	0.4	2
157	In Vivo Depletion of FoxP3+ Tregs Using the DEREG Mouse Model. Methods in Molecular Biology, 2011, 707, 157-172.	0.4	136
158	Regulatory T Cells: History and Perspective. Methods in Molecular Biology, 2011, 707, 3-17.	0.4	193
159	In Vitro and In Vivo Analyses of Regulatory T Cell Suppression of CD8+ T Cells. Methods in Molecular Biology, 2011, 707, 45-54.	0.4	1
160	Flow Cytometric Detection of Human Regulatory T Cells. Methods in Molecular Biology, 2011, 707, 263-279.	0.4	29
161	Foxp3+ follicular regulatory T cells control the germinal center response. Nature Medicine, 2011, 17, 975-982.	15.2	1,092
162	ChIP-on-Chip for FoxP3. Methods in Molecular Biology, 2011, 707, 71-82.	0.4	2

#	Article	IF	CITATIONS
163	Models of Aire-Dependent Gene Regulation for Thymic Negative Selection. Frontiers in Immunology, 2011, 2, 14.	2.2	14
164	Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood, 2011, 118, 2462-2472.	0.6	174
165	Foxp3+ regulatory T cells exert asymmetric control over murine helper responses by inducing Th2 cell apoptosis. Blood, 2011, 118, 1845-1853.	0.6	49
166	Immunological tolerance 50 years after the Burnet Nobel Prize. Immunology and Cell Biology, 2011, 89, 14-15.	1.0	5
167	Assessment of Suppressive Capacity by Human Regulatory T Cells Using a Reproducible, Bi-Directional CFSE-Based In Vitro Assay. Methods in Molecular Biology, 2011, 707, 233-241.	0.4	16
168	Regulatory T cells fulfil their promise?. Immunology and Cell Biology, 2011, 89, 825-826.	1.0	2
169	Antigen-Specific Induction of Regulatory T Cells In Vivo and In Vitro. Methods in Molecular Biology, 2011, 707, 173-185.	0.4	20
170	Analysis of Human FOXP3+ Treg Cells Phenotype and Function. Methods in Molecular Biology, 2011, 707, 199-218.	0.4	18
171	Depletion of Human Regulatory T Cells. Methods in Molecular Biology, 2011, 707, 219-231.	0.4	16
172	Measurement of Proliferation and Disappearance of Regulatory T Cells in Human Studies Using Deuterium-Labeled Glucose. Methods in Molecular Biology, 2011, 707, 243-261.	0.4	7
173	Generation of T Cell Hybridomas from Naturally Occurring FoxP3+ Regulatory T Cells. Methods in Molecular Biology, 2011, 707, 39-44.	0.4	6
174	Flow Cytometric Profiling of Mature and Developing Regulatory T Cells in the Thymus. Methods in Molecular Biology, 2011, 707, 55-69.	0.4	2
175	Genetic Tools for Analysis of FoxP3+ Regulatory T Cells In Vivo. Methods in Molecular Biology, 2011, 707, 105-118.	0.4	3
176	In Vivo Treg Suppression Assays. Methods in Molecular Biology, 2011, 707, 119-156.	0.4	21
177	MicroRNA in the Adaptive Immune System, in Sickness and in Health. Journal of Clinical Immunology, 2010, 30, 339-346.	2.0	79
178	Understanding the genetic regulation of IgE production. Blood Reviews, 2010, 24, 163-169.	2.8	28
179	A new role for interleukinâ€10 in immune regulation. Immunology and Cell Biology, 2010, 88, 769-770.	1.0	18
180	Is Foxp3 the Master Regulator of Regulatory T Cells?. Progress in Molecular Biology and Translational Science, 2010, 92, 315-317.	0.9	3

#	Article	IF	Citations
181	Cellular and Molecular Requirements in Lymph Node and Peyer's Patch Development. Progress in Molecular Biology and Translational Science, 2010, 92, 177-205.	0.9	9
182	Commentary on "Lymphoid Tissue Inducer Cells and the Evolution of CD4 Dependent High-Affinity Antibody Responses― Progress in Molecular Biology and Translational Science, 2010, 92, 175-176.	0.9	0
183	The Development of T-Cell Immunity. Progress in Molecular Biology and Translational Science, 2010, 92, 1-3.	0.9	1
184	Inhibition of CCR6 Function Reduces the Severity of Experimental Autoimmune Encephalomyelitis via Effects on the Priming Phase of the Immune Response. Journal of Immunology, 2009, 182, 3121-3130.	0.4	117
185	MicroRNA in the immune system, microRNA as an immune system. Immunology, 2009, 127, 291-298.	2.0	269
186	Shortâ€eircuiting regulatory Tâ€eell proliferation during chronic infection. Immunology and Cell Biology, 2009, 87, 443-444.	1.0	1
187	Autoimmunity: Beyond the immune system. Immunology and Cell Biology, 2008, 86, 295-296.	1.0	6
188	Unravelling the association of partial T-cell immunodeficiency and immune dysregulation. Nature Reviews Immunology, 2008, 8, 545-558.	10.6	123
189	Differentiation of regulatory Foxp3 ⁺ T cells in the thymic cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11903-11908.	3.3	213
190	Dicer-dependent microRNA pathway safeguards regulatory T cell function. Journal of Experimental Medicine, 2008, 205, 1993-2004.	4.2	361
191	Genetic Lesions in Thymic T Cell Clonal Deletion and Thresholds for Autoimmunity. Novartis Foundation Symposium, 2008, , 180-199.	1.2	4
192	Dicer-dependent microRNA pathway safeguards regulatory T cell function. Journal of Cell Biology, 2008, 182, i12-i12.	2.3	0
193	Lack of Foxp3 function and expression in the thymic epithelium. Journal of Experimental Medicine, 2007, 204, 475-480.	4.2	60
194	Opposing Functions of the T Cell Receptor Kinase ZAP-70 in Immunity and Tolerance Differentially Titrate in Response to Nucleotide Substitutions. Immunity, 2007, 27, 912-926.	6.6	137
195	Impairment of organ-specific T cell negative selection by diabetes susceptibility genes: genomic analysis by mRNA profiling. Genome Biology, 2007, 8, R12.	13.9	37
196	Thymic development and peripheral homeostasis of regulatory T cells. Current Opinion in Immunology, 2007, 19, 176-185.	2.4	145
197	Tracing the action of ILâ€2 in tolerance to isletâ€specific antigen. Immunology and Cell Biology, 2007, 85, 338-342.	1.0	29
198	There and back again: Autoimmune Polyendocrinopathy Syndrome Type I and the Aire knockout mouse. Drug Discovery Today: Disease Models, 2006, 3, 33-40.	1.2	6

Adrian Liston

#	Article	IF	CITATIONS
199	Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood, 2006, 108, 3777-3785.	0.6	394
200	The why and how of thymocyte negative selection. Current Opinion in Immunology, 2006, 18, 175-183.	2.4	64
201	Genetic lesions in T-cell tolerance and thresholds for autoimmunity. Immunological Reviews, 2005, 204, 87-101.	2.8	69
202	Genetic lesions in thymic T cell clonal deletion and thresholds for autoimmunity. Novartis Foundation Symposium, 2005, 267, 180-92; discussion 192-9.	1.2	2
203	Gene Dosage–limiting Role of Aire in Thymic Expression, Clonal Deletion, and Organ-specific Autoimmunity. Journal of Experimental Medicine, 2004, 200, 1015-1026.	4.2	271
204	Generalized Resistance to Thymic Deletion in the NOD Mouse. Immunity, 2004, 21, 817-830.	6.6	90
205	Generalized Resistance to Thymic Deletion in the NOD MouseA Polygenic Trait Characterized by Defective Induction of Bim. Immunity, 2004, 21, 817-830.	6.6	132
206	Subversion of the chemokine world by microbial pathogens. BioEssays, 2003, 25, 478-488.	1,2	41
207	Aire regulates negative selection of organ-specific T cells. Nature Immunology, 2003, 4, 350-354.	7.0	729