
Vello Tõugu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5397391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Lipoic Acid Has the Potential to Normalize Copper Metabolism, Which Is Dysregulated in Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 85, 715-728.	1.2	7
2	Evaluation of Zn2+- and Cu2+-Binding Affinities of Native Cu,Zn-SOD1 and Its G93A Mutant by LC-ICP MS. Molecules, 2022, 27, 3160.	1.7	2
3	Surface carboxylation or PEGylation decreases CuO nanoparticles' cytotoxicity to human cells in vitro without compromising their antibacterial properties. Archives of Toxicology, 2020, 94, 1561-1573.	1.9	14
4	Copper(II)-binding equilibria in human blood. Scientific Reports, 2020, 10, 5686.	1.6	64
5	Copper(II) partially protects three histidine residues and the Nâ€ŧerminus of amyloidâ€Î² peptide from diethyl pyrocarbonate (DEPC) modification. FEBS Open Bio, 2020, 10, 1072-1081.	1.0	4
6	Toxicity of Amyloid-β Peptides Varies Depending on Differentiation Route of SH-SY5Y Cells. Journal of Alzheimer's Disease, 2019, 71, 879-887.	1.2	17
7	Redox properties of Cys 2 His 2 and Cys 4 zinc fingers determined by electrospray ionization mass spectrometry. FEBS Open Bio, 2018, 8, 923-931.	1.0	1
8	Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. α-Lipoic acid as a potential anti-copper agent. Scientific Reports, 2018, 8, 1463.	1.6	47
9	In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells. PLoS ONE, 2017, 12, e0186636.	1.1	55
10	Oxidation of Methionine-35 in Alzheimer's amyloid-beta peptide and the aggregation of the oxidized peptide. SpringerPlus, 2015, 4, .	1.2	1
11	Effect of methionine-35 oxidation on the aggregation of amyloid-β peptide. Biochemistry and Biophysics Reports, 2015, 3, 94-99.	0.7	45
12	Toxicity of amyloid beta 1-40 and 1-42 on SH-SY5Y cell line. SpringerPlus, 2015, 4, .	1.2	5
13	Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II. Journal of Bioenergetics and Biomembranes, 2015, 47, 209-216.	1.0	13
14	Insulin Fibrillization at Acidic and Physiological pH Values is Controlled by Different Molecular Mechanisms. Protein Journal, 2015, 34, 398-403.	0.7	21
15	<i>In vitro</i> fibrillization of Alzheimer's amyloid-β peptide (1-42). AIP Advances, 2015, 5, .	0.6	48
16	Copper(II) ions and the Alzheimer's amyloid- \hat{l}^2 peptide: Affinity and stoichiometry of binding. , 2014, , .		0
17	Affinity of zinc and copper ions for insulin monomers. Metallomics, 2014, 6, 1296-1300.	1.0	19
18	The missing link in the amyloid cascade of Alzheimer's disease – Metal ions. Neurochemistry International, 2013, 62, 367-378.	1.9	72

Vello ΤÃμugu

#	Article	IF	CITATIONS
19	Effect of agitation on the peptide fibrillization: Alzheimer's amyloidâ€ <i>β</i> peptide 1â€42 but not amylin and insulin fibrils can grow under quiescent conditions. Journal of Peptide Science, 2013, 19, 386-391.	0.8	34
20	Redox and Metal Ion Binding Properties of Human Insulin-like Growth Factor 1 Determined by Electrospray Ionization Mass Spectrometry. Biochemistry, 2012, 51, 5851-5859.	1.2	3
21	Coordination of zinc ions to the key proteins of neurodegenerative diseases: Aβ, APP, α-synuclein and PrP. Coordination Chemistry Reviews, 2012, 256, 2219-2224.	9.5	50
22	Interference of lowâ€molecular substances with the thioflavinâ€T fluorescence assay of amyloid fibrils. Journal of Peptide Science, 2012, 18, 59-64.	0.8	31
23	Interactions of Zn(ii) and Cu(ii) ions with Alzheimer's amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics, 2011, 3, 250.	1.0	196
24	Zn(II) ions co-secreted with insulin suppress inherent amyloidogenic properties of monomeric insulin. Biochemical Journal, 2010, 430, 511-518.	1.7	39
25	Label-Free High-Throughput Screening Assay for Inhibitors of Alzheimer's Amyloid-β Peptide Aggregation Based on MALDI MS. Analytical Chemistry, 2010, 82, 8558-8565.	3.2	31
26	Zn(II)―and Cu(II)â€induced nonâ€fibrillar aggregates of amyloidâ€Î² (1–42) peptide are transformed to amyl fibrils, both spontaneously and under the influence of metal chelators. Journal of Neurochemistry, 2009, 110, 1784-1795.	oid 2.1	180
27	Binding of zinc(II) and copper(II) to the fullâ€length Alzheimer's amyloidâ€Î² peptide. Journal of Neurochemistry, 2008, 104, 1249-1259.	2.1	201
28	The modelling and kinetic investigation of the lipase-catalysed acetylation of stereoisomeric prostaglandins. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 62-69.	1.8	13
29	NMR monitoring of lipase-catalyzed reactions of prostaglandins: preliminary estimation of reaction velocities. Journal of Molecular Catalysis B: Enzymatic, 2004, 32, 15-19.	1.8	7
30	Lipase Action on Some Non-Triglyceride Substrates. ChemInform, 2004, 35, no.	0.1	0
31	Lipase action on some non-triglyceride substrates. Journal of Molecular Catalysis B: Enzymatic, 2003, 22, 279-298.	1.8	13
32	1,1′-Bis(anilino)-4-,4′-bis(naphtalene)-8,8′-disulfonate Acts as an Inhibitor of Lipoprotein Lipase and Competes for Binding with Apolipoprotein CII. Journal of Biological Chemistry, 2003, 278, 37183-37194.	1.6	11
33	Calbindin D9k:  A Protein Optimized for Calcium Binding at Neutral pH. Biochemistry, 2001, 40, 15334-15340.	1.2	26
34	Comparison of salt effects on the reactions of acetylcholinesterase with cationic and anionic inhibitors. BBA - Proteins and Proteomics, 2001, 1544, 189-195.	2.1	13
35	Hydrolysis of emulsified mixtures of triacylglycerols by pancreatic lipase. BBA - Proteins and Proteomics, 1999, 1431, 97-106.	2.1	7
36	Lipase-catalysed esterification in supercritical carbon dioxide and in hexane. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 259-262.	1.0	27

Vello ΤÃμugu

#	Article	IF	CITATIONS
37	Lipase-catalysed enantioselective hydrolysis of bicyclo[3.2.0]heptanol esters in supercritical carbon dioxide. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 811-816.	1.0	14
38	Lipase-catalysed enantioselective hydrolysis: Interpretation of the kinetic results in terms of frontier orbital localisation. Tetrahedron, 1997, 53, 4889-4900.	1.0	6
39	Role of ionic interactions in cholinesterase catalysis. BBA - Proteins and Proteomics, 1996, 1298, 12-30.	2.1	35
40	Single-step enzymatic conversion of peptide amides to esters. Tetrahedron Letters, 1995, 36, 2343-2346.	0.7	0
41	Aminolysis of acyl-chymotrypsins by amino acids. Kinetic appearance of concentration effect in peptide yield enhancement by freezing. BBA - Proteins and Proteomics, 1995, 1247, 272-276.	2.1	9
42	Electrostatic effects in trypsin reactions. Influence of salts. FEBS Journal, 1994, 222, 475-481.	0.2	7
43	Acetylcholinesterase as Polyelectrolyte: Inhibition by Alkylammonium Ions. Bioorganic Chemistry, 1993, 21, 411-414.	2.0	1
44	Single-step synthesis of kyotorphin in frozen solutions by chymotrypsin. Tetrahedron: Asymmetry, 1993, 4, 1559-1564.	1.8	20
45	Peptide synthesis by chymotrypsin in frozen solutions. FEBS Letters, 1993, 329, 40-42.	1.3	29
46	Acetylcholinesterase as polyelectrolyte: interaction with multivalent cationic inhibitors. Biochimica Et Biophysica Acta - General Subjects, 1993, 1157, 199-203.	1.1	4
47	Acetylcholinesterase as polyelectrolyte in reaction with cationic substrates. FEBS Letters, 1987, 225, 77.81	1.3	14