Saranya Kuppusamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5397363/publications.pdf Version: 2024-02-01

		257357	302012
49	2,484	24	39
papers	citations	h-index	g-index
51	51	51	3441
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Unresolved complex mixtures of petroleum hydrocarbons in the environment: An overview of ecological effects and remediation approaches. Critical Reviews in Environmental Science and Technology, 2021, 51, 2872-2894.	6.6	4
2	Ecological Impacts of Total Petroleum Hydrocarbons. , 2020, , 95-138.		12
3	Approaches for Remediation of Sites Contaminated with Total Petroleum Hydrocarbons. , 2020, , 167-205.		10
4	Total Petroleum Hydrocarbons. , 2020, , .		38
5	Examining the polyphenol content, antioxidant activity and fatty acid composition of twenty-one different wastes of fruits, vegetables, oilseeds and beverages. SN Applied Sciences, 2020, 2, 1.	1.5	12
6	An Overview of Total Petroleum Hydrocarbons. , 2020, , 1-27.		7
7	Methodologies for Analysis and Identification of Total Petroleum Hydrocarbons. , 2020, , 29-55.		4
8	Fate of Total Petroleum Hydrocarbons in the Environment. , 2020, , 57-77.		13
9	Impact of Total Petroleum Hydrocarbons on Human Health. , 2020, , 139-165.		23
10	Regulatory Guidelines for Total Petroleum Hydrocarbon Contamination. , 2020, , 207-224.		2
11	Are There as Many Essential and Non-essential Minerals in Hydroponic Strawberry (Fragaria ananassa) Tj ETQq1 1	0,784314 1.9	l rgBT /Over
12	Effect of Cold Stress on the Content of Minerals and Water Soluble Vitamins in Spinach (Spinacia) Tj ETQq0 0 0 r	gBT/Over	lock 10 Tf 5
13	Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agriculture, Ecosystems and Environment, 2018, 257, 47-59.	2.5	200
14	Agriculturally relevant microbial community structure in long-term fertilized paddy soils as revealed by phospholipid fatty acid (PLFA) and pyrosequencing analyses. Archives of Agronomy and Soil Science, 2018, 64, 1379-1393.	1.3	4
15	Does long-term application of fertilizers enhance the micronutrient density in soil and crop?—Evidence from a field trial conducted on a 47-year-old rice paddy. Journal of Soils and Sediments, 2018, 18, 49-62.	1.5	12
16	Hairy Vetch Incorporated as Green Manure Inhibits Sulfathiazole Uptake by Lettuce in Soil. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	4
17	A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil. Ecotoxicology and Environmental Safety, 2018, 148, 615-619.	2.9	41

18	Green manure amendment enhances microbial activity and diversity in antibiotic-contaminated soil. Applied Soil Ecology, 2018, 129, 72-76.	2	2.1	43
----	--	---	-----	----

SARANYA KUPPUSAMY

#	Article	IF	CITATIONS
19	Quercus robur acorn peel as a novel coagulating adsorbent for cationic dye removal from aquatic ecosystems. Ecological Engineering, 2017, 101, 3-8.	1.6	54
20	Pyrogenic carbon and its role in contaminant immobilization in soils. Critical Reviews in Environmental Science and Technology, 2017, 47, 795-876.	6.6	72
21	Polycyclic aromatic hydrocarbons (PAHs) degradation potential, surfactant production, metal resistance and enzymatic activity of two novel cellulose-degrading bacteria isolated from koala faeces. Environmental Earth Sciences, 2017, 76, 1.	1.3	14
22	Occurrence of sulfonamide class of antibiotics resistance in Korean paddy soils under long-term fertilization practices. Journal of Soils and Sediments, 2017, 17, 1618-1625.	1.5	23
23	Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in the South Korean agricultural environment: A national survey. Journal of Integrative Agriculture, 2017, 16, 1841-1851.	1.7	42
24	Long-Term Inorganic Fertilization Effect on the Micronutrient Density in Soil and Rice Grain Cultivated in a South Korean Paddy Field. Communications in Soil Science and Plant Analysis, 2017, 48, 1603-1615.	0.6	9
25	Risk-based remediation of polluted sites: A critical perspective. Chemosphere, 2017, 186, 607-615.	4.2	34
26	Evaluation of nineteen food wastes for essential and toxic elements. International Journal of Recycling of Organic Waste in Agriculture, 2017, 6, 367-373.	2.0	11
27	Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 2017, 168, 944-968.	4.2	544
28	Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea). Food Chemistry, 2017, 215, 185-192.	4.2	85
29	Enhanced Nitrogen and Phosphorus Removal by Woody Plants with Deep-Planting Technique for the Potential Environmental Management of Carcass Burial Sites. Sustainability, 2017, 9, 155.	1.6	7
30	Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation. Journal of Hazardous Materials, 2016, 317, 169-179.	6.5	118
31	Isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) degrading, pH tolerant, N-fixing and P-solubilizing novel bacteria from manufactured gas plant (MGP) site soils. Environmental Technology and Innovation, 2016, 6, 204-219.	3.0	29
32	Pyrosequencing analysis of bacterial community diversity in long-term fertilized paddy field soil. Applied Soil Ecology, 2016, 108, 84-91.	2.1	55
33	Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. Chemosphere, 2016, 162, 31-39.	4.2	47
34	Occurrence and diversity of tetracycline resistance genes in the agricultural soils of South Korea. Environmental Science and Pollution Research, 2016, 23, 22190-22196.	2.7	21
35	Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation. Reviews in Environmental Science and Biotechnology, 2016, 15, 327-354.	3.9	94
36	Assessment of antioxidant activity, minerals, phenols and flavonoid contents of common plant/tree waste extracts. Industrial Crops and Products, 2016, 83, 630-634.	2.5	23

#	Article	IF	CITATIONS
37	Bioaugmentation with Novel Microbial Formula vs. Natural Attenuation of a Long-Term Mixed Contaminated Soil—Treatability Studies in Solid- and Slurry-Phase Microcosms. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	32
38	Potential of Melaleuca diosmifolia as a novel, non-conventional and low-cost coagulating adsorbent for removing both cationic and anionic dyes. Journal of Industrial and Engineering Chemistry, 2016, 37, 198-207.	2.9	27
39	Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies. Chemical Engineering Research and Design, 2016, 100, 173-182.	2.7	73
40	Oak (Quercus robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from Aquatic Ecosystems and Industrial Effluents. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	31
41	Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings – Assessments in liquid- and slurry-phase systems. International Biodeterioration and Biodegradation, 2016, 108, 149-157.	1.9	88
42	Kinetics of PAH degradation by a new acid-metal-tolerant Trabulsiella isolated from the MGP site soil and identification of its potential to fix nitrogen and solubilize phosphorous. Journal of Hazardous Materials, 2016, 307, 99-107.	6.5	36
43	Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environment International, 2016, 87, 1-12.	4.8	277
44	Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective. Reviews of Environmental Contamination and Toxicology, 2016, 236, 117-192.	0.7	54
45	In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. Reviews of Environmental Contamination and Toxicology, 2016, 236, 1-115.	0.7	67
46	Free Amino Acid Composition of Korean Spinach (Spinacia oleracea) Cultivars as Influenced by Different Harvesting Time. Korean Journal of Environmental Agriculture, 2016, 35, 104-110.	0.0	6
47	Bioremediation potential of natural polyphenol rich green wastes: A review of current research and recommendations for future directions. Environmental Technology and Innovation, 2015, 4, 17-28.	3.0	66
48	STANDARDIZATION OF THE SPORE DENSITY OF AM FUNGAL INOCULUM FOR EFFECTIVE COLONIZATION. International Journal of Agriculture Sciences, 2012, 4, 176-181.	0.0	3
49	A SIGNIFICANT QUALITY STANDARD IN TERMS OF PERCENT ROOT COLONIZATION FOR EFFECTIVITY OF THE ARBUSCULAR MYCORRHIZAL (AM) INOCULUM. Indian Journal of Medical Research, 2012, 4, 168-172.	0.0	0