Yong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5397338/publications.pdf

Version: 2024-02-01

36	3,564	25 h-index	37
papers	citations		g-index
38	38	38	4582
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Photon-upconverters for blue organic light-emitting diodes: a low-cost, sky-blue example. Nanoscale Advances, 2022, 4, 1318-1323.	2.2	6
2	Protein-protected gold/silver alloy nanoclusters in metal-enhanced singlet oxygen generation and their correlation with photoluminescence. Materials Science and Engineering C, 2020, 109, 110525.	3.8	19
3	Nanosilver-enhanced AlE photosensitizer for simultaneous bioimaging and photodynamic therapy. Materials Chemistry Frontiers, 2020, 4, 3074-3085.	3.2	55
4	Establishing empirical design rules of nucleic acid templates for the synthesis of silver nanoclusters with tunable photoluminescence and functionalities towards targeted bioimaging applications. Nanoscale Advances, 2020, 2, 3921-3932.	2.2	18
5	Biomimicking synthesis of photoluminescent molecular lantern catalyzed by in-situ formation of nanogold catalysts. Materials Science and Engineering C, 2017, 77, 1111-1116.	3.8	10
6	Understanding seed-mediated growth of gold nanoclusters at molecular level. Nature Communications, 2017, 8, 927.	5.8	228
7	Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA. Molecular Therapy - Nucleic Acids, 2017, 8, 158-168.	2.3	25
8	Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nature Communications, 2017, 8, 1555.	5.8	122
9	Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications. Advanced Healthcare Materials, 2016, 5, 1844-1859.	3.9	78
10	Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties. Journal of Molecular and Engineering Materials, 2016, 04, 1640003.	0.9	13
11	The Innermost Three Gold Atoms Are Indispensable To Maintain the Structure of the Au ₁₈ (SR) ₁₄ Cluster. Journal of Physical Chemistry C, 2016, 120, 22096-22102.	1.5	22
12	Bovine Serum Albulmin Proteinâ€Templated Silver Nanocluster (BSAâ€Ag ₁₃): An Effective Singlet Oxygen Generator for Photodynamic Cancer Therapy. Advanced Healthcare Materials, 2016, 5, 2528-2535.	3.9	79
13	Promotion of reversible Li+ storage in transition metal dichalcogenides by Ag nanoclusters. NPG Asia Materials, 2016, 8, e247-e247.	3.8	16
14	A Rapid and Quantitative Fluorimetric Method for Protein-Targeting Small Molecule Drug Screening. Journal of Visualized Experiments, 2015, , e53261.	0.2	5
15	Decoupling the CO-Reduction Protocol to Generate Luminescent Au ₂₂ (SR) ₁₈ Nanocluster. Journal of Physical Chemistry C, 2015, 119, 10910-10918.	1.5	40
16	Introducing Amphiphilicity to Noble Metal Nanoclusters via Phase-Transfer Driven Ion-Pairing Reaction. Journal of the American Chemical Society, 2015, 137, 2128-2136.	6.6	139
17	Enhancing stability through ligand-shell engineering: A case study with Au25(SR)18 nanoclusters. Nano Research, 2015, 8, 3488-3495.	5.8	66
18	Counterionâ€Assisted Shaping of Nanocluster Supracrystals. Angewandte Chemie - International Edition, 2015, 54, 184-189.	7.2	81

#	Article	IF	CITATIONS
19	Solvent Controls the Formation of Au ₂₉ (SR) ₂₀ Nanoclusters in the COâ€Reduction Method. Particle and Particle Systems Characterization, 2014, 31, 652-656.	1.2	22
20	Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale, 2014, 6, 157-161.	2.8	186
21	Identification of a Highly Luminescent Au ₂₂ (SG) ₁₈ Nanocluster. Journal of the American Chemical Society, 2014, 136, 1246-1249.	6.6	490
22	Protein-based fluorescent metal nanoclusters for small molecular drug screening. Chemical Communications, 2014, 50, 13805-13808.	2.2	64
23	Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. Chemical Communications, 2014, 50, 5703.	2.2	78
24	Presentation matters: Identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism. Nano Research, 2014, 7, 805-815.	5 . 8	88
25	Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chemical Communications, 2013, 49, 9740.	2.2	59
26	Luminescent Noble Metal Nanoclusters as an Emerging Optical Probe for Sensor Development. Chemistry - an Asian Journal, 2013, 8, 858-871.	1.7	299
27	Scalable and Precise Synthesis of Thiolated Au _{10–12} , Au ₁₅ , Au ₁₈ , and Au ₂₅ Nanoclusters via pH Controlled CO Reduction. Chemistry of Materials, 2013, 25, 946-952.	3 . 2	238
28	Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale, 2013, 5, 4606.	2.8	100
29	Traveling through the Desalting Column Spontaneously Transforms Thiolated Ag Nanoclusters from Nonluminescent to Highly Luminescent. Journal of Physical Chemistry Letters, 2013, 4, 1811-1815.	2.1	31
30	Twoâ€Phase Synthesis of Small Thiolateâ€Protected Au ₁₅ and Au ₁₈ Nanoclusters. Small, 2013, 9, 2696-2701.	5.2	74
31	Observation of Cluster Size Growth in CO-Directed Synthesis of Au ₂₅ (SR) ₁₈ Nanoclusters. ACS Nano, 2012, 6, 7920-7927.	7.3	157
32	Fast Synthesis of Thiolated Au ₂₅ Nanoclusters via Protection–Deprotection Method. Journal of Physical Chemistry Letters, 2012, 3, 2310-2314.	2.1	71
33	Controllable synthesis of mesoporous F–TiO2 spheres for effective photocatalysis. Journal of Materials Chemistry, 2011, 21, 11430.	6.7	115
34	Preparation, characterization and antibacterial properties of silver-modified graphene oxide. Journal of Materials Chemistry, 2011, 21, 3350-3352.	6.7	420
35	Controlled Synthesis and Up-Conversion Emission of Rare-Earth Tri-Doped NaYF ₄ Nanocrystals Under Femtosecond-Laser Excitation. Journal of Nanoscience and Nanotechnology, 2011, 11, 7700-7708.	0.9	2
36	Properties of Bi2O3 thin films prepared via a modified Pechini route. Current Applied Physics, 2010, 10, 1372-1377.	1.1	34