Aleksander M Wrobel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5396881/publications.pdf

Version: 2024-02-01

516710 642732 31 569 16 23 citations g-index h-index papers 31 31 31 299

docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Silicon Carbonitride (SiCN) Films by Remote Hydrogen Microwave Plasma CVD from Tris(dimethylamino)silane as Novel Singleâ€Source Precursor. Chemical Vapor Deposition, 2010, 16, 211-215.	1.3	39
2	Remote nitrogen microwave plasma chemical vapor deposition from a tetramethyldisilazane precursor. 1. Growth mechanism, structure, and surface morphology of silicon carbonitride films. Thin Solid Films, 2006, 497, 24-34.	1.8	34
3	Effect of UV irradiation of the film during plasma chemical vapour deposition. Thin Solid Films, 1992, 216, 203-210.	1.8	32
4	Silicon nitride film growth by remote plasma CVD using Tris(dimethylamino)silane. Vacuum, 1998, 51, 747-750.	3.5	29
5	Remote hydrogen microwave plasma chemical vapor deposition of silicon carbonitride films from a (dimethylamino)dimethylsilane precursor: Compositional and structural dependencies of film properties. Diamond and Related Materials, 2006, 15, 1650-1658.	3.9	29
6	Silicon carbonitride by remote microwave plasma CVD from organosilicon precursor: Growth mechanism and structure of resulting Si:C:N films. Applied Surface Science, 2007, 253, 7211-7218.	6.1	29
7	Silicon Carbonitride Films Produced by Remote Hydrogen Microwave Plasma CVD Using a (Dimethylamino)dimethylsilane Precursor. Chemical Vapor Deposition, 2005, 11, 44-52.	1.3	28
8	Mechanism of the Initiation Step in Atomic Hydrogen-Induced CVD of Amorphous Hydrogenated Silicon–Carbon Films from Single-Source Precursors. Chemical Vapor Deposition, 1998, 04, 133-141.	1.3	27
9	Title is missing!. Tribology Letters, 2002, 13, 71-76.	2.6	26
10	Remote Hydrogen Microwave Plasma Chemical Vapor Deposition of Amorphous Silicon Carbonitride (aâ€siCN) Coatings Derived From Tris(dimethylamino)Silane. Plasma Processes and Polymers, 2011, 8, 542-556.	3.0	24
11	Growth Mechanism and Chemical Structure of Amorphous Hydrogenated Silicon Carbide (aâ€siC:H) Films Formed by Remote Hydrogen Microwave Plasma CVD From a Triethylsilane Precursor: Part 1. Chemical Vapor Deposition, 2009, 15, 39-46.	1.3	23
12	Atomic hydrogen-induced chemical vapor deposition of a-Si:C:H thin-film materials from alkylsilane precursors. Diamond and Related Materials, 1997, 6, 1081-1091.	3.9	22
13	Remote nitrogen microwave plasma chemical vapor deposition from a tetramethyldisilazane precursor. 2. Properties of deposited silicon carbonitride films. Thin Solid Films, 2006, 497, 35-41.	1.8	20
14	Remote Hydrogen Microwave Plasma CVD of Silicon Carbonitride Films from a Tetramethyldisilazane Source. Part 1: Characterization of the Process and Structure of the Films. Chemical Vapor Deposition, 2007, 13, 595-600.	1.3	20
15	Silicon carbonitride by remote microwave plasma CVD from organosilicon precursor: Physical and mechanical properties of deposited Si:C:N films. Applied Surface Science, 2007, 253, 7404-7411.	6.1	19
16	Experiments and analyses of SiC thin film deposition from organo-silicon by a remote plasma method. Thin Solid Films, 2000, 368, 287-291.	1.8	17
17	Hard a-SiC:H films formed by remote hydrogen microwave plasma chemical vapor deposition using a novel single-source precursor. Thin Solid Films, 2012, 520, 7100-7108.	1.8	17
18	Surface modification of silicon oxycarbide films produced by remote hydrogen microwave plasma chemical vapour deposition from tetramethyldisiloxane precursor. Surface and Coatings Technology, 2018, 350, 686-698.	4.8	15

#	Article	IF	CITATIONS
19	Remote hydrogen microwave plasma chemical vapor deposition of silicon carbonitride films from a (dimethylamino)dimethylsilane precursor: Characterization of the process, chemical structure, and surface morphology of the films. Diamond and Related Materials, 2006, 15, 1484-1491.	3.9	14
20	Reactivity of organosilicon precursors in remote hydrogen microwave plasma chemical vapor deposition of silicon carbide and silicon carbonitride thinâ \in film coatings. Applied Organometallic Chemistry, 2010, 24, 201-207.	3.5	14
21	Remote Hydrogen Microwave Plasma CVD of Silicon Carbonitride Films From a Tetramethyldisilazane Source. Part 2: Compositional and Structural Dependencies of Film Properties. Chemical Vapor Deposition, 2007, 13, 601-608.	1.3	13
22	aâ€ <scp>S</scp> i <scp>C</scp> : <scp>H</scp> Films by Remote Hydrogen Microwave Plasma <scp>CVD</scp> From Ethylsilane Precursors ^{**} . Chemical Vapor Deposition, 2013, 19, 242-250.	1.3	11
23	Properties of Amorphous Hydrogenated Silicon Carbide (aâ€siC:H) Films Formed by Remote Hydrogen Microwave Plasma CVD From a Triethylsilane Precursor: Part 2. Chemical Vapor Deposition, 2009, 15, 47-52.	1.3	10
24	Remote hydrogen microwave plasma chemical vapor deposition from methylsilane precursors. 1. Growth mechanism and chemical structure of deposited a-SiC:H films. Thin Solid Films, 2014, 564, 222-231.	1.8	10
25	Amorphous silicon carbonitride thinâ€film coatings produced by remote nitrogen microwave plasma chemical vapour deposition using organosilicon precursor. Applied Organometallic Chemistry, 2017, 31, e3871.	3.5	10
26	Hard silicon carbonitride thinâ€film coatings produced by remote hydrogen plasma chemical vapor deposition using aminosilane and silazane precursors. 1: Deposition mechanism, chemical structure, and surface morphology. Plasma Processes and Polymers, 2021, 18, 2000240.	3.0	9
27	Hard silicon carbonitride thinâ€film coatings by remote hydrogen plasma chemical vapor deposition using aminosilane and silazane precursors. 2:ÂPhysical, optical, and mechanical properties of deposited films. Plasma Processes and Polymers, 2021, 18, 2000241.	3.0	8
28	Thin aâ€SiC:H Films Formed by Remote Hydrogen Microwave Plasma CVD using Dimethylsilane and Trimethylsilane Precursors. Chemical Vapor Deposition, 2014, 20, 112-117.	1.3	7
29	Remote hydrogen microwave plasma chemical vapor deposition from methylsilane precursors. 2. Surface morphology and properties of deposited a-SiC:H films. Thin Solid Films, 2014, 564, 232-240.	1.8	5
30	Silicon Oxycarbide Films Produced by Remote Microwave Hydrogen Plasma CVD using a Tetramethyldisiloxane Precursor: Growth Kinetics, Structure, Surface Morphology, and Properties. Chemical Vapor Deposition, 2015, 21, 307-318.	1.3	5
31	Amorphous Hydrogenated Silicon Carbide (aâ€SiC:H) Coatings Produced by Remote Hydrogen Microwave Plasma CVD from Bis(dimethylsilyl)ethane ―a Novel Singleâ€Source Precursor. Chemical Vapor Deposition, 2011, 17, 186-190.	1.3	3