
Junhua Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/539679/publications.pdf Version: 2024-02-01

Ιυνιμιλ λλει

#	Article	IF	CITATIONS
1	Thermal-Recoverable Tough Hydrogels Enhanced by Porphyrin Decorated Graphene Oxide. Nanomaterials, 2019, 9, 1487.	1.9	7
2	Tough and Fatigue-Resistant Hydrogels with Triple Interpenetrating Networks. Journal of Nanomaterials, 2019, 2019, 1-15.	1.5	5
3	Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels. Polymers, 2019, 11, 1873.	2.0	30
4	Porphyrin Immobilized Nanographene Oxide for Enhanced and Targeted Photothermal Therapy of Brain Cancer. ACS Biomaterials Science and Engineering, 2016, 2, 1357-1366.	2.6	60
5	Facile Synthesis of Tough Double Network Hydrogel. MRS Advances, 2016, 1, 1953-1958.	0.5	7
6	Thermal kinetics and thermoâ€mechanical properties of graphene integrated fluoroelastomer. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1691-1700.	2.4	7
7	Efficient photothermal therapy of brain cancer through porphyrin functionalized graphene oxide. New Journal of Chemistry, 2015, 39, 5743-5749.	1.4	84
8	Tough and fully recoverable hydrogels. Journal of Materials Chemistry B, 2015, 3, 5284-5290.	2.9	35
9	Ion-linked double-network hydrogel with high toughness and stiffness. Journal of Materials Science, 2015, 50, 5458-5465.	1.7	59
10	Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 72, 17-24.	1.3	46
11	Thermo- and pH-responsive fluorescence behaviors of sulfur-functionalized detonation nanodiamond-poly(N-isopropylacrylamide). Colloid and Polymer Science, 2015, 293, 1299-1305.	1.0	23
12	A shape healable tough hydrogel. New Journal of Chemistry, 2015, 39, 8461-8466.	1.4	14
13	3D printing of an extremely tough hydrogel. RSC Advances, 2015, 5, 81324-81329.	1.7	97
14	Imitation proteoglycans improve toughness of double network hydrogels. Materials Chemistry and Physics, 2015, 166, 66-72.	2.0	7
15	Unveil the Fluorescence of Carbon Quantum Dots. Advanced Engineering Materials, 2015, 17, 138-142.	1.6	22
16	Novel fluorescence resonance energy transfer optical sensors for vitamin B ₁₂ detection using thermally reduced carbon dots. New Journal of Chemistry, 2015, 39, 501-507.	1.4	118
17	Graphene oxide-integrated high-temperature durable fluoroelastomer for petroleum oil sealing. Composites Science and Technology, 2014, 92, 126-133.	3.8	49
18	Using Hydrothermal Method to Prepare Reduced Graphene-Hemin Electrochemical Biosensor for Tyrosine Detection. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	0