Cheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5396626/publications.pdf

Version: 2024-02-01

	430874	552781
983	18	26
citations	h-index	g-index
27	27	1500
2/	2/	1538
docs citations	times ranked	citing authors
	citations 27	983 18 citations h-index 27 27

#	Article	IF	CITATIONS
1	Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals. Chemistry of Materials, 2009, 21, 891-897.	6.7	164
2	Flexible self-supported metal–organic framework mats with exceptionally high porosity for enhanced separation and catalysis. Journal of Materials Chemistry A, 2018, 6, 334-341.	10.3	114
3	Bio-Inspired Polydopamine-Mediated Zr-MOF Fabrics for Solar Photothermal-Driven Instantaneous Detoxification of Chemical Warfare Agent Simulants. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18437-18445.	8.0	77
4	Facile Fabrication of Ultrathin Metal–Organic Framework-Coated Monolayer Colloidal Crystals for Highly Efficient Vapor Sensing. Chemistry of Materials, 2015, 27, 7601-7609.	6.7	67
5	Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal–Organic Framework Filters. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20396-20403.	8.0	65
6	Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing. Chemical Communications, 2012, 48, 6169.	4.1	62
7	Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core–Shell Dopamine–Melanin@Metal–Organic Frameworks and Their Fabrics. ACS Applied Materials & amp; Interfaces, 2019, 11, 7927-7935.	8.0	60
8	Synthesis and application of nanocages in supercapacitors. Chemical Engineering Journal, 2018, 351, 135-156.	12.7	52
9	Self-supported three-dimensional macroporous amorphous NiFe bimetallic-organic frameworks for enhanced water oxidation. Applied Surface Science, 2021, 550, 149323.	6.1	34
10	Facile preparation of Prussian blue analogue Co ₃ [Co(CN) ₆] ₂ with fine-tuning color transition temperature as thermochromic material. CrystEngComm, 2017, 19, 2057-2064.	2.6	32
11	High Performance Hollow Metal–Organic Framework Nanoshellâ€Based Etalons for Volatile Organic Compounds Detection. Advanced Materials Technologies, 2016, 1, 1600127.	5.8	30
12	Facile synthesis of sheet-like N–TiO ₂ /g-C ₃ N ₄ heterojunctions with highly enhanced and stable visible-light photocatalytic activities. RSC Advances, 2015, 5, 34281-34291.	3.6	29
13	Leadâ€Free Allâ€Inorganic Indium Chloride Perovskite Variant Nanocrystals for Efficient Luminescence. Advanced Optical Materials, 2022, 10, 2101344.	7.3	26
14	Multiâ€Anion Intercalated Layered Double Hydroxide Nanosheetâ€Assembled Hollow Nanoprisms with Improved Pseudocapacitive and Electrocatalytic Properties. Chemistry - an Asian Journal, 2018, 13, 1129-1137.	3.3	24
15	Hollow CeO ₂ dodecahedrons: one-step template synthesis and enhanced catalytic performance. RSC Advances, 2016, 6, 60975-60982.	3.6	23
16	Polyhedral metal–organic framework monolayer colloidal crystals with sharpened and crystal facet-dependent selectivity for organic vapor sensing. Journal of Materials Chemistry C, 2021, 9, 5379-5386.	5.5	21
17	Porous Copper/Zinc Bimetallic Oxides Derived from MOFs for Efficient Photocatalytic Reduction of CO2 to Methanol. Catalysts, 2020, 10, 1127.	3 . 5	20
18	Metalâ€Organic Framework Derived Porous αâ€Fe ₂ O ₃ /C Nanoâ€shuttles for Enhanced Visibleâ€ight Photocatalysis. ChemistrySelect, 2020, 5, 1047-1053.	1.5	20

CHENG LI

#	Article	IF	CITATION
19	Self-supported 2D Fe-doped Ni-MOF nanosheets as highly efficient and stable electrocatalysts for benzylamine oxidation. Applied Surface Science, 2022, 578, 152065.	6.1	15
20	One-Step Asymmetric Growth of Continuous Metal–Organic Framework Thin Films on Two-Dimensional Colloidal Crystal Arrays: A Facile Approach toward Multifunctional Superstructures. Crystal Growth and Design, 2016, 16, 2700-2707.	3.0	14
21	Ultrathin polymer gel-infiltrated monolayer colloidal crystal films for rapid colorimetric chemical sensing. RSC Advances, 2016, 6, 66191-66196.	3.6	9
22	Cobalt–Manganese Mixedâ€Sulfide Nanocages Encapsulated by Reduced Graphene Oxide: In Situ Sacrificial Template Synthesis and Superior Lithium Storage Properties. Chemistry - an Asian Journal, 2017, 12, 2284-2290.	3.3	7
23	Dual-stimuli responsive color-changing nanofibrous membranes as effective media for anti-counterfeiting and erasable writing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126626.	4.7	7
24	Ultrathin Photonic Polymer Gel Films Templated by Non-Close-Packed Monolayer Colloidal Crystals to Enhance Colorimetric Sensing. Polymers, 2019, 11, 534.	4.5	4
25	Optimization of process parameters for preparation of powdered activated coke to achieve maximum SO2 adsorption using response surface methodology. Frontiers in Energy, 2021, 15, 159-169.	2.3	4